The Dataverse Network:
An Infrastructure for Data Sharing

Gary King
Institute for Quantitative Social Science
Harvard University

(8/14/08 talk at “UseR! 2008”, Technische Universität, Dortmund, Germany)

Papers

Papers

- More information: http://TheData.org
Accessibility:

Most large data sets: in public archives

Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:

Data in different archives have different identifiers

One major archive renumbered all its acquisitions

Changes to data are made; identifiers are reused or deaccessioned; old data are lost

Data sets are not like books

Static data files (even if on the web): unreadable after a few years

When storage methods change: some data sets are lost; others have altered content!

Connection to analysis software (like R) uncertain, time consuming, annoying, error prone

Gary King (Harvard)
Accessibility:

- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author
- Problems even with professional archives: data in different archives have different identifiers; one major archive renumbered all its acquisitions; changes to data are made; identifiers are reused or deaccessioned; old data are lost
- Data sets are not like books: static data files (even if on the web): unreadable after a few years; when storage methods change: some data sets are lost; others have altered content!
- Connection to analysis software (like R): uncertain, time consuming, annoying, error prone
Accessibility:

Most large data sets: in public archives
Accessibility:

- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives: Data in different archives have different identifiers. One major archive renumbered all its acquisitions. Changes to data are made; identifiers are reused or deaccessioned; old data are lost. Data sets are not like books: Static data files (even if on the web): unreadable after a few years. When storage methods change: some data sets are lost; others have altered content. Connection to analysis software (like R) uncertain, time consuming, annoying, error prone.
Accessibility:
- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:
Infrastructure for Quantitative Data

- **Accessibility:**
 - Most large data sets: in public archives
 - Most data in published articles: not accessible, results not replicable without the original author
- **Problems even with professional archives:**
 - Data in different archives have different identifiers
Accessibility:
- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:
- Data in different archives have different identifiers
- One major archive renumbered all its acquisitions
Accessibility:

- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:

- Data in different archives have different identifiers
- One major archive renumbered all its acquisitions
- Changes to data are made; identifiers are reused or deaccessioned; old data are lost
Infrastructure for Quantitative Data

- **Accessibility:**
 - Most large data sets: in public archives
 - Most data in published articles: not accessible, results not replicable without the original author

- **Problems even with professional archives:**
 - Data in different archives have different identifiers
 - One major archive renumbered all its acquisitions
 - Changes to data are made; identifiers are reused or deaccessioned; old data are lost

- **Data sets are not like books**
Accessibility:
- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:
- Data in different archives have different identifiers
- One major archive renumbered all its acquisitions
- Changes to data are made; identifiers are reused or deaccessioned; old data are lost

Data sets are not like books
- Static data files (even if on the web): unreadable after a few years
Accessibility:
- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:
- Data in different archives have different identifiers
- One major archive renumbered all its acquisitions
- Changes to data are made; identifiers are reused or deaccessioned; old data are lost

Data sets are not like books
- Static data files (even if on the web): unreadable after a few years
- When storage methods change: some data sets are lost; others have altered content!
Accessibility:
- Most large data sets: in public archives
- Most data in published articles: not accessible, results not replicable without the original author

Problems even with professional archives:
- Data in different archives have different identifiers
- One major archive renumbered all its acquisitions
- Changes to data are made; identifiers are reused or deaccessioned; old data are lost

Data sets are not like books
- Static data files (even if on the web): unreadable after a few years
- When storage methods change: some data sets are lost; others have altered content!

Connection to analysis software (like R)
Infrastructure for Quantitative Data

- **Accessibility:**
 - Most large data sets: in public archives
 - Most data in published articles: not accessible, results not replicable without the original author

- **Problems even with professional archives:**
 - Data in different archives have different identifiers
 - One major archive renumbered all its acquisitions
 - Changes to data are made; identifiers are reused or deaccessioned; old data are lost

- **Data sets are not like books**
 - Static data files (even if on the web): unreadable after a few years
 - When storage methods change: some data sets are lost; others have altered content!

- **Connection to analysis software (like R)**
 - uncertain, time consuming, annoying, error prone
What About a Centralized Data Access Solution?

Highly desirable when feasible
Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
Impossible when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.

Why don’t researchers put data in public archives?
The Archive gets the credit
Upon questioning: they want credit, control, and visibility
(So why don’t they worry about print publishers getting all the credit? Lack of data citations!)

We propose: technological solutions to these political problems

Gary King (Harvard)
What About a Centralized Data Access Solution?

- Highly desirable when feasible

Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place. Impossible when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.

Why don’t researchers put data in public archives? The Archive gets the credit. Upon questioning: they want credit, control, and visibility. (So why don’t they worry about print publishers getting all the credit? Lack of data citations!)

We propose: technological solutions to these political problems.
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- **Impossible** when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.

Why don’t researchers put data in public archives?

The Archive gets the credit

Upon questioning: they want credit, control, and visibility

(So why don’t they worry about print publishers getting all the credit? Lack of data citations!)

We propose:

- technological solutions to these political problems

Gary King (Harvard)
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- **Impossible** when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.
- Why don’t researchers put data in public archives?
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- **Impossible** when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.
- Why don’t researchers put data in public archives?
 - The Archive gets the credit
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- Impossible when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.
- Why don’t researchers put data in public archives?
 - The Archive gets the credit
 - Upon questioning: they want credit, control, and visibility
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- **Impossible** when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.
- Why don’t researchers put data in public archives?
 - The Archive gets the credit
 - Upon questioning: they want credit, control, and visibility
 - (So why don’t they worry about print publishers getting all the credit?)
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- Impossible when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.

Why don’t researchers put data in public archives?
- The Archive gets the credit
- Upon questioning: they want credit, control, and visibility
 (So why don’t they worry about print publishers getting all the credit? Lack of data citations!)
What About a Centralized Data Access Solution?

- Highly desirable when feasible
- Works great in astronomy, etc., when data formats are universal, goals are common, and agreements are in place
- **Impossible** when data are heterogeneous in format, origin, size, effort needed to collect or analyze, IRB access rules, etc.
- Why don’t researchers put data in public archives?
 - The Archive gets the credit
 - Upon questioning: they want credit, control, and visibility
 - (So why don’t they worry about print publishers getting all the credit? Lack of data citations!)
- We propose: **technological solutions to these political problems**
Requirements for Effective Data Sharing Infrastructure

Recognition: for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.

Public Distribution: without permission from the author

Authorization: fulfill requirements the author originally met

Validation: check that data exists, without authorization

Persistence: Decades from now...

Verification: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.

Ease of Use: Neither editors nor authors employ professional archivists

Legal Protection:
- Journals have liability protection for print; none for data
- In the U.S., if you put data on the web without IRB approval, you are violating federal regulations (IRB approval must be for data distribution, not merely for the study)

Solution must not require lawyers (we've automated the IRB)

Gary King (Harvard)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence** Decades from now...

- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.

- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection**: Journals have liability protection for print; none for data
 - In the U.S., if you put data on the web without IRB approval, you are violating federal regulations (IRB approval must be for data distribution, not merely for the study)
 - Solution must not require lawyers (we've automated the IRB)

Gary King (Harvard)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted

Gary King (Harvard)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R,
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence** Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux,
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence** Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now.
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection**: Journals have liability protection for print; none for data. In the U.S., if you put data on the web without IRB approval, you are violating federal regulations (IRB approval must be for data distribution, not merely for the study).

Solution must not require lawyers (we've automated the IRB)

Gary King (Harvard)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection**:
 - Journals have liability protection for print; none for data

In the U.S., if you put data on the web without IRB approval, you are violating federal regulations (IRB approval must be for data distribution, not merely for the study)

Solution must not require lawyers (we've automated the IRB)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection**:
 - Journals have liability protection for print; none for data
 - *In the U.S., if you put data on the web without IRB approval, you are violating federal regulations*
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection:**
 - Journals have liability protection for print; none for data
 - *In the U.S., if you put data on the web without IRB approval, you are violating federal regulations*
 - (IRB approval must be for data distribution, not merely for the study)
Requirements for Effective Data Sharing Infrastructure

- **Recognition**, for authors, journals, etc. in (1) citations to data, (2) citations to associated articles, and (3) visibility on the web.
- **Public Distribution**, without permission from the author
- **Authorization**: fulfill requirements the author originally met
- **Validation**: check that data exists, without authorization
- **Persistence**: Decades from now...
- **Verification**: data remains unchanged, even if converted from SPSS to Stata to R, from a PC to a Mac to Linux, and from 8 inch magnetic tape to 5.25 inch floppies to a DVD.
- **Ease of Use**: Neither editors nor authors employ professional archivists
- **Legal Protection**:
 - Journals have liability protection for print; none for data
 - *In the U.S., if you put data on the web without IRB approval, you are violating federal regulations*
 - (IRB approval must be for data distribution, not merely for the study)
 - Solution must not require lawyers (we’ve automated the IRB)

First author (last name first)

Special formatting codes

Special indentation

Citations: rule-based, precise, redundant

Print Citations Work: authors don’t think publishers get all the credit; cited articles can be found; copyeditors don’t need to see the original to know it exists; the link from citation to print persists
A New Citation Standard for Numeric Data

1. Author
2. Year
3. Title
4. Unique Global Identifier: will work after URLs stop working
A New Citation Standard for Numeric Data

1 Author
2 Year
3 Title
4 Unique Global Identifier: will work after URLs stop working
5 Linked to a Bridge Service (presently a URL: http://id.thedata.org/hdl%3A1902.4%2F00754)
A New Citation Standard for Numeric Data

1. Author
2. Year
3. Title
4. Unique Global Identifier: will work after URLs stop working
5. Linked to a Bridge Service (presently a URL: http://id.thedata.org/hdl%3A1902.4%2F00754)
6. Universal Numeric Fingerprint (UNF)
[Distributor];

1. Author
2. Year
3. Title
4. Unique Global Identifier: will work after URLs stop working
5. Linked to a Bridge Service (presently a URL: http://id.thedata.org/hdl%3A1902.4%2F00754)
6. Universal Numeric Fingerprint (UNF)
7. Standard rules for adding citation elements

1. Author
2. Year
3. Title
4. Unique Global Identifier: will work after URLs stop working
5. Linked to a Bridge Service (presently a URL: http://id.thedata.org/hdl%3A1902.4%2F00754)
6. Universal Numeric Fingerprint (UNF)
7. Standard rules for adding citation elements
Data to Universal Numeric Fingerprints

| 1 4 4 21 | ... | 1 2 2 91 | ... | 1 9 2 72 | ... | 0 2 2 2 | ... | 1 6 2 12 | ... | 1 9 4 52 | ... | 0 3 2 23 | ... | 0 2 5 91 | ... | 0 5 8 91 | ... | 1 9 1 72 | ... |
| 1 4 4 21 | ... | 1 2 2 91 | ... | 1 9 2 72 | ... | 0 2 2 2 | ... | 1 6 2 12 | ... | 1 9 4 52 | ... | 0 3 2 23 | ... | 0 2 5 91 | ... | 0 5 8 91 | ... | 1 9 1 72 | ... |

\[\begin{array}{cccc}
1 & 4 & 4 & 21 \\
1 & 2 & 2 & 91 \\
1 & 9 & 2 & 72 \\
0 & 2 & 2 & 2 \\
1 & 6 & 2 & 12 \\
1 & 9 & 4 & 52 \\
0 & 3 & 2 & 23 \\
0 & 2 & 5 & 91 \\
0 & 5 & 8 & 91 \\
1 & 9 & 1 & 72 \\
\end{array} \]

\[\Rightarrow \]

ZNQRI14053UZq389x0Bffg==
Data to Universal Numeric Fingerprints

\[
\begin{pmatrix}
1 & 4 & 4 & 21 & \cdots & 121 \\
1 & 2 & 2 & 91 & \cdots & 212 \\
1 & 9 & 2 & 72 & \cdots & 104 \\
0 & 2 & 2 & 2 & \cdots & 321 \\
1 & 6 & 2 & 12 & \cdots & 204 \\
1 & 9 & 4 & 52 & \cdots & 311 \\
0 & 3 & 2 & 23 & \cdots & 92 \\
0 & 2 & 5 & 91 & \cdots & 212 \\
0 & 5 & 8 & 91 & \cdots & 91 \\
1 & 9 & 1 & 72 & \cdots & 104 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 2 & 91 & \cdots & 212 \\
\end{pmatrix}
\Rightarrow
\]

Gary King (Harvard)
Dataverse Network
Data to Universal Numeric Fingerprints

\[
\begin{pmatrix}
1 & 4 & 4 & 21 & \cdots & 121 \\
1 & 2 & 2 & 91 & \cdots & 212 \\
1 & 9 & 2 & 72 & \cdots & 104 \\
0 & 2 & 2 & 2 & \cdots & 321 \\
1 & 6 & 2 & 12 & \cdots & 204 \\
1 & 9 & 4 & 52 & \cdots & 311 \\
0 & 3 & 2 & 23 & \cdots & 92 \\
0 & 2 & 5 & 91 & \cdots & 212 \\
0 & 5 & 8 & 91 & \cdots & 91 \\
1 & 9 & 1 & 72 & \cdots & 104 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 2 & 91 & \cdots & 212 \\
\end{pmatrix}
\implies ZNQRI14053UZq389xBffg==
Advantages of UNFs

UNF is calculated from the content, not the file. It's the same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

Noninvertible properties: UNFs convey no information about data content. OK to distribute for highly sensitive, confidential, or proprietary data. Copyeditor can validate data’s existence even without authorization.

The citation refers to one specific data set that can’t ever be altered, even if journal doesn’t keep a copy. Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF.
Advantages of UNFs

- UNF is calculated from the content not the file:

 - Cryptographic technology:
 - any change in data content changes the UNF. (cannot tinker after the fact!)
 - Noninvertible properties
 - UNFs convey no information about data content
 - OK to distribute for highly sensitive, confidential, or proprietary data
 - Copyeditor can validate data's existence even without authorization

 The citation refers to one specific data set that can't ever be altered, even if journal doesn't keep a copy
 - Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF
Advantages of UNFs

- UNF is calculated from the content not the file: It's the Same UNF regardless of changes in computer hardware,
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium,
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system.

 Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

 Noninvertible properties UNFs convey no information about data content OK to distribute for highly sensitive, confidential, or proprietary data.

 Copyeditor can validate data's existence even without authorization.

The citation refers to one specific data set that can't ever be altered, even if journal doesn't keep a copy.

Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF.
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software,

Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

Noninvertible properties: UNFs convey no information about data content. OK to distribute for highly sensitive, confidential, or proprietary data. Copyeditor can validate data’s existence even without authorization.

The citation refers to one specific data set that can’t ever be altered, even if journal doesn’t keep a copy. Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF.
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database.

 Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

 Noninvertible properties: UNFs convey no information about data content. OK to distribute for highly sensitive, confidential, or proprietary data.

 Copyeditor can validate data's existence even without authorization.

 The citation refers to one specific data set that can't ever be altered, even if journal doesn't keep a copy.

 Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF.
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

- Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)
Advantages of UNFs

- **UNF is calculated from the content not the file:** Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

- **Cryptographic technology:** any change in data content changes the UNF. (cannot tinker after the fact!)

- **Noninvertible properties**
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.
- Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)
- Noninvertible properties
 - UNFs convey no information about data content
Advantages of UNFs

- **UNF is calculated from the content not the file:** Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

- **Cryptographic technology:** any change in data content changes the UNF. (cannot tinker after the fact!)

- **Noninvertible properties**
 - UNFs convey no information about data content
 - OK to distribute for highly sensitive, confidential, or proprietary data
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

- Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

- Noninvertible properties
 - UNFs convey no information about data content
 - OK to distribute for highly sensitive, confidential, or proprietary data
 - Copyeditor can validate data’s existence even without authorization
Advantages of UNFs

- UNF is calculated from the content not the file: Its the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.
- Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)
- Noninvertible properties
 - UNFs convey no information about data content
 - OK to distribute for highly sensitive, confidential, or proprietary data
 - Copyeditor can validate data’s existence even without authorization
- The citation refers to one specific data set that can’t ever be altered, even if journal doesn’t keep a copy
Advantages of UNFs

- UNF is calculated from the content not the file: It's the Same UNF regardless of changes in computer hardware, storage medium, operating system, statistical software, database, or spreadsheet software.

- Cryptographic technology: any change in data content changes the UNF. (cannot tinker after the fact!)

- Noninvertible properties
 - UNFs convey no information about data content
 - OK to distribute for highly sensitive, confidential, or proprietary data
 - Copyeditor can validate data’s existence even without authorization

- The citation refers to one specific data set that can’t ever be altered, even if journal doesn’t keep a copy

- Future researchers can quickly check that they have the same data as used by the author: merely recalculate the UNF
Web 2.0 Terminology

Software: find CD, install locally, hit next, hit next, hit next.

Web application software: no installation; load web browser and run (Dataverse Network Software)

Host: The computers where the web application software runs (universities, archives, libraries)

Virtual host: Where the web application software seems to run, but does not (web sites of: authors, journals, granting agencies, research centers, universities, scholarly organizations, etc.)
Web 2.0 Terminology

- **Software**: find CD, install locally,
Software: find CD, install locally, hit next,
Web 2.0 Terminology

- **Software**: find CD, install locally, hit next, hit next,
Software: find CD, install locally, hit next, hit next, hit next...
Web 2.0 Terminology

- **Software**: find CD, install locally, hit next, hit next, hit next...
- **Web application software**: no installation; load web browser and run
 (Dataverse Network Software)
Web 2.0 Terminology

- **Software**: find CD, install locally, hit next, hit next, hit next...
- **Web application software**: no installation; load web browser and run (Dataverse Network Software)
- **Host**: The computers where the web application software runs (universities, archives, libraries)
Web 2.0 Terminology

- **Software**: find CD, install locally, hit next, hit next, hit next...
- **Web application software**: no installation; load web browser and run (Dataverse Network Software)
- **Host**: The computers where the web application software runs (universities, archives, libraries)
- **Virtual host**: Where the web application software *seems* to run, but does not (web sites of: authors, journals, granting agencies, research centers, universities, scholarly organizations, etc.)
Your dataverse branded as your web site but served by the Dataverse Network, therefore requiring no local installation and providing an enormous array of services.

http://www.peterson.com

http://dvn.iq.harvard.edu/peterson
Your dataverse branded as your web site but served by the Dataverse Network, therefore requiring no local installation and providing an enormous array of services.
The Dataverse Network Project Homepage (http://TheData.org)

Dataverse Networks may harvest metadata from each other (dashed lines)

The IQSS Dataverse Network at Harvard University

- SMR Dataverse
- Gary King’s Dataverse
- PoliSci 101 Dataverse
- U.S. Census Dataverse
- APSA Legislative Section Dataverse
- NSF Dataverse
- Weatherhead Center Dataverse
- MacArthur Network on Inequality Dataverse
- Dept of Psychology Dataverse

Each Dataverse Network may serve numerous individual dataverses (arrows)

Most users come directly to a dataverse, which is a self-contained archive (with all services provided by a Dataverse Network)

Software is available at the project homepage and only needs to be installed to establish a Dataverse Network. Dataverses are virtual hosts.
Your Dataverse

Full service virtual archive, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)

List of your data, or your view of the universe of data

Branded as yours: with the look and feel of your site

Easy to setup: give DVN your style, and include a link to your new dataverse

Easy to manage: no software or hardware installation, backups, worry about archiving standards, or data format translations; still exists if you move; easy to rebrand

High acceptability: experiments indicate >90% uptake for authors

Reuse: same data may appear on different dataverses

Results: Articles with data available have twice the impact factor! (with dataverse, it should be more)

Gary King (Harvard)
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, . . .)
- **List of your data, or your view of the universe of data**

High acceptability: experiments indicate >90% uptake for authors

Reuse: same data may appear on different dataverses

Results: Articles with data available have twice the impact factor! (with dataverse, it should be more)

Gary King (Harvard)
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
- List of your data, or your view of the universe of data
- **Branded as yours**: with the look and feel of your site
Full service virtual archive, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, . . .)

List of your data, or your view of the universe of data

Branded as yours: with the look and feel of your site

Easy to setup: give DVN your style, and include a link to your new dataverse
Your Dataverse

- Full service virtual archive, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
- List of your data, or your view of the universe of data
- Branded as yours: with the look and feel of your site
- Easy to setup: give DVN your style, and include a link to your new dataverse
- Easy to manage: no software or hardware installation, backups, worry about archiving standards, or data format translations; still exists if you move; easy to rebrand

Gary King (Harvard)
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
- List of your data, or your view of the universe of data
- **Branded as yours**: with the look and feel of your site
- **Easy to setup**: give DVN your style, and include a link to your new dataverse
- **Easy to manage**: no software or hardware installation, backups, worry about archiving standards, or data format translations; still exists if you move; easy to rebrand
- **High acceptability**: experiments indicate $>90\%$ uptake for authors
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
- List of your data, or your view of the universe of data
- **Branded as yours**: with the look and feel of your site
- **Easy to setup**: give DVN your style, and include a link to your new dataverse
- **Easy to manage**: no software or hardware installation, backups, worry about archiving standards, or data format translations; still exists if you move; easy to rebrand
- **High acceptability**: experiments indicate > 90% uptake for authors
- **Reuse**: same data may appear on different dataverses
Your Dataverse

- **Full service virtual archive**, with numerous data services (citation, metadata, archiving, subsetting, conversion, translation, analysis, ...)
- List of your data, or your view of the universe of data
- **Branded as yours**: with the look and feel of your site
- **Easy to setup**: give DVN your style, and include a link to your new dataverse
- **Easy to manage**: no software or hardware installation, backups, worry about archiving standards, or data format transactions; still exists if you move; easy to rebrand
- **High acceptability**: experiments indicate > 90% uptake for authors
- **Reuse**: same data may appear on different dataverses
- **Results**: Articles with data available have twice the impact factor! (with dataverse, it should be more)
Dataverse Uses

Authors, for their data or their view of the universe of data
Journals, for replication data archives
Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
Teachers, a list or for in depth analysis
Sections of scholarly organizations, to organize existing data
Granting agencies
Research centers
Major Research Projects
Academic departments, universities, data centers, libraries
Data archives
Dataverse Uses

- Authors, for their data or their view of the universe of data
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, for in-depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
- Research centers
- Major Research Projects
- Academic departments, universities, data centers, libraries
- Data archives

Gary King (Harvard)
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
- Research centers
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
- Research centers
- Major Research Projects
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
- Research centers
- Major Research Projects
- Academic departments, universities, data centers, libraries
Dataverse Uses

- Authors, for their data or their view of the universe of data
- Journals, for replication data archives
- Future Researchers: browse or search for a dataverse or dataset; forward citation search; verification via UNFs; subsetting; read metadata, abstract, & documentation; check for new versions; translate format; statistical analyses; download
- Teachers, a list or for in depth analysis
- Sections of scholarly organizations, to organize existing data
- Granting agencies
- Research centers
- Major Research Projects
- Academic departments, universities, data centers, libraries
- Data archives
The Universe of Data meets the Universe of Methods
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**

- Zelig: Everyone’s Statistical Software
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method

- **R + Zelig + Dataverse Network**
 - Write Zelig bridge function
 - \Rightarrow your method appears in the DVN GUI
 - Greatly reduced time from methods development to widespread use

- Easy for applied data analysts who use R
- Easy for applied researchers who don’t use R (GUI time not wasted: save R code for replication or further analysis)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
The Universe of Data meets the Universe of Methods

- R Project for Statistical Computing
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality

Zelig: Everyone’s Statistical Software

An ontology we developed of almost all statistical methods

Users incorporate original packages a simple model description language (and R bridge functions)

Result: Unified Syntax, the same 3 commands to use any method

Easy for applied data analysts who use R

R + Zelig + Dataverse Network

Write Zelig bridge function ⇝ your method appears in the DVN GUI

Greatly reduced time from methods development to widespread use

Easy for applied researchers who don’t use R (GUI time not wasted: save R code for replication or further analysis)
R Project for Statistical Computing

- nearly 1000 packages; most new methods appear in R first
- Highly diverse examples, syntax, documentation, and quality
- Can be difficult for us; harder for applied researchers
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods

R + Zelig + Dataverse Network

- Write Zelig bridge function
 - Your method appears in the DVN GUI

- Greatly reduced time from methods development to widespread use
 - Easy for applied researchers who don’t use R
 - GUI time not wasted: save R code for replication or further analysis

Gary King (Harvard)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method

Gary King (Harvard) Dataverse Network
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method
 - Easy for applied data analysts who use R

- **R + Zelig + Dataverse Network**

 =>

 - Write Zelig bridge function
 - Your method appears in the DVN GUI
 - Greatly reduced time from methods development to widespread use
 - Easy for applied researchers who don’t use R (GUI time not wasted: save R code for replication or further analysis)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, *the same 3 commands to use any method*
 - Easy for applied data analysts who use R

- R + Zelig + Dataverse Network

Write Zelig bridge function \Rightarrow your method appears in the DVN GUI

Greatly reduced time from methods development to widespread use

Easy for applied researchers who don’t use R (GUI time not wasted: save R code for replication or further analysis)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method
 - Easy for applied data analysts who use R

- **R + Zelig + Dataverse Network**
 - Write Zelig bridge function → your method appears in the DVN GUI

Greatly reduced time from methods development to widespread use
Easy for applied researchers who don’t use R
(GUI time not wasted: save R code for replication or further analysis)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method
 - Easy for applied data analysts who use R

- **R + Zelig + Dataverse Network**
 - Write Zelig bridge function \(\rightsquigarrow \) your method appears in the DVN GUI
 - Greatly reduced time from methods development to widespread use
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method
 - Easy for applied data analysts who use R

- **R + Zelig + Dataverse Network**
 - Write Zelig bridge function \(\mapsto\) your method appears in the DVN GUI
 - Greatly reduced time from methods development to widespread use
 - Easy for applied researchers who don’t use R

Gary King (Harvard)
The Universe of Data meets the Universe of Methods

- **R Project for Statistical Computing**
 - nearly 1000 packages; most new methods appear in R first
 - Highly diverse examples, syntax, documentation, and quality
 - Can be difficult for us; harder for applied researchers

- **Zelig: Everyone’s Statistical Software**
 - An ontology we developed of almost all statistical methods
 - Users incorporate original packages a simple model description language (and R bridge functions)
 - Result: Unified Syntax, the same 3 commands to use any method
 - Easy for applied data analysts who use R

- **R + Zelig + Dataverse Network**
 - Write Zelig bridge function ⇛ your method appears in the DVN GUI
 - Greatly reduced time from methods development to widespread use
 - Easy for applied researchers who don’t use R
 - (GUI time not wasted: save R code for replication or further analysis)
How to participate

To increase citations to your data (and web visibility), choose:

- Sign up for a free dataverse for your website (no installations, branded as yours, citations for all your data)
- Install DVN software & you can also give out dataverses

To increase use of your R package through Zelig and the DVN GUI:

- Write a simple Zelig bridge function

To join us:

DVN and Zelig are open source projects; contributions welcome!

For more information:

http://TheData.org

Gary King (Harvard)
Dataverse Network
How to participate

- **To increase citations to your data** (& web visibility), choose:

 - Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
 - Install DVN software & you can also give out dataverses

To increase use of your R package through Zelig and the DVN GUI:

- Write a simple Zelig bridge function

To join us:

- DVN and Zelig are open source projects; contributions welcome!

For more information:

http://TheData.org

Gary King (Harvard)
Dataverse Network
How to participate

- To increase citations to your data (\& web visibility), choose:
 - Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
To increase citations to your data (& web visibility), choose:

- Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
- or install DVN software & you can also give out dataverses
How to participate

- **To increase citations to your data** (& web visibility), choose:
 - Sign up for a free **dataverse** for your web site (no installations, branded as yours, citations for all your data)
 - or install **DVN software** & you can also give out dataverses

- **To increase use of your R package through Zelig and the DVN GUI:**

 Write a simple Zelig bridge function
How to participate

- **To increase citations to your data** (& web visibility), choose:
 - Sign up for a free [dataverse](#) for your web site (no installations, branded as yours, citations for all your data)
 - or install [DVN software](#) & you can also give out dataverses

- **To increase use of your R package through Zelig and the DVN GUI**:
 - Write a simple Zelig bridge function
How to participate

- **To increase citations to your data (& web visibility), choose:**
 - Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
 - or install DVN software & you can also give out dataverses
- **To increase use of your R package through Zelig and the DVN GUI:**
 - Write a simple Zelig bridge function
- **To join us:**
How to participate

- **To increase citations to your data** (& web visibility), choose:
 - Sign up for a free **dataverse** for your web site (no installations, branded as yours, citations for all your data)
 - or install **DVN software** & you can also give out dataverses

- **To increase use of your R package through Zelig and the DVN GUI:**
 - Write a simple Zelig bridge function

- **To join us:**
 - DVN and Zelig are open source projects; contributions welcome!
How to participate

- **To increase citations to your data** (& web visibility), choose:
 - Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
 - or install DVN software & you can also give out dataverses

- **To increase use of your R package through Zelig and the DVN GUI:**
 - Write a simple Zelig bridge function

- **To join us:**
 - DVN and Zelig are open source projects; contributions welcome!

- **For more information:**

http://TheData.org
How to participate

To increase citations to your data (& web visibility), choose:
- Sign up for a free dataverse for your web site (no installations, branded as yours, citations for all your data)
- or install DVN software & you can also give out dataverses

To increase use of your R package through Zelig and the DVN GUI:
- Write a simple Zelig bridge function

To join us:
- DVN and Zelig are open source projects; contributions welcome!

For more information:

http://TheData.org
Technology used in DVN Software

Language: Java Enterprise Edition 5 (with EJB3 and JSF) (team picked for JavaOne; Sun engineers regularly call for advice)
Technology used in DVN Software

- Language: Java Enterprise Edition 5 (with EJB3 and JSF) (team picked for JavaOne; Sun engineers regularly call for advice)
- Application server: GlassFish (wrote press release on our project)
Technology used in DVN Software

- Language: **Java Enterprise Edition 5** (with EJB3 and JSF) (team picked for JavaOne; Sun engineers regularly call for advice)
- Application server: **GlassFish** (wrote press release on our project)
- Database: we use **PostgreSQL** (can substitute others)
Technology used in DVN Software

- **Language:** Java Enterprise Edition 5 (with EJB3 and JSF) (team picked for JavaOne; Sun engineers regularly call for advice)
- **Application server:** GlassFish (wrote press release on our project)
- **Database:** we use PostgreSQL (can substitute others)
- **Statistical computing:** R and Zelig