Exploratory and Inferential Analysis of Benchmark Experiments

Manuel J. A. Eugster and Friedrich Leisch

Department for Statistics
Ludwig-Maximilians-Universität München

useR!, 2008
Setup and Execution layers

Domain-specific language to describe the elements of benchmark experiments using small bricks.

But ... even in our working group we have supervised, cluster and bicluster problems and until now it seems to be hard to reconcile them in “one language”. We have developed some rudiments, but it seems to be more manageable if the user writes the concrete problem-specific “loop” by his own.

“Enter the benchmark”

Benchmark experiment:
(1) classification problems {BreastCancer, monks3, musk}; (2) algorithms {lda, naiveBayes, knn, rpart, svm, nnet}; (3) misclassification; (4) bootstrap 250 samples; (5) out-of-bootstrap samples;

List of performance matrices:

> uciraw$monks3

 lda nb knn rpart svm nnet
[1,] 0.0390 0.0390 0.0488 0.0195 0.0195 0.0195
[2,] 0.0498 0.0498 0.0299 0.0149 0.0149 0.0149
...

> library(benchmark)
Loading required package: reshape
Loading required package: relations
Loading required package: sets
Loading required package: lattice
Basic plots

> boxplot(monks3)

Other basic plots: densityplot and stripplot.

The bench object

Subsets: [samp, alg, perf, ds] or subset.
> monks3 <- uci[,,'monks3']

Benchmark experiment

Coercing: as.bench tries to capture the manifoldness of raw benchmark experiment data.

Benchmark experiment plot

> beplot(monks3)
Inferential analysis

Statistical inference

1. based on linear mixed effects models.
2. based on Friedman-based rank tests.

Implemented “paths”:

1. based on linear mixed effects models.
2. based on Friedman-based rank tests.

Benchmark experiment plot

> beplot(monks3, lines.show=TRUE)

Simple rankings

Mean performance:

> m <- apply(monks3, 'alg', mean)

lda nb knn rpart svm nnet
0.0352 0.0353 0.0344 0.0116 0.0110 0.0293

> as.ranking(m)

svm rpart nnet knn lda nb
1 2 3 4 5 6

Minimax:

> as.ranking(apply(monks3, 'alg', max))

svm lda nb rpart nnet knn
1 2 2 2 5 6
The ibea object

The inferential benchmark experiment analysis frameworks encapsulate functions belonging to one “paths”.

```r
> ibea <- make.lmer.ibea()

Loading required package: lme4
Loading required package: Matrix
Loading required package: multcomp
Loading required package: mvtnorm
```

The “lmer-path”

```r
> summary(ibea)
Lmer inferential benchmark experiment analysis framework:
Available functions are
* model : function (bench)
* relation : function (x, alpha)
* relation.pairwise : function (test, alpha)
* test.global : function (model)
* test.pairwise : function (model)
```

Individual steps:

1. `model(bench) -> lme4::mer`
2. `test.pairwise(lme4::mer) -> multcomp::glht`
3. `relation.pairwise(multcomp::glht, alpha) -> relations::relation`

All-in-one:

```r
> rel <- ibea$relation(monks3, 0.05)
```

A binary relation of size 6 x 6.

Statistically correct order:

```r
> ord <- tsort(rel)
```

```
 rpart - svm < nnet < knn - lda - nb
```

```r
> as.ranking(ord)
```

```
<table>
<thead>
<tr>
<th></th>
<th>rpart</th>
<th>svm</th>
<th>nnet</th>
<th>knn</th>
<th>lda</th>
<th>nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
```
Further benchmark functionality

Exploratory and inferential analysis assistance for benchmark experiments with more than one performance measure and/or more than one data set.

“Enter the benchmark”??

Take the red pill ...

... at http://statistik.lmu.de/~eugster/benchmark/.

Package:
benchmark version 0.01 – useR! 2008 source code release.

Reports:
Exploratory and Inferential Analysis of Benchmark Experiments.