Servicenavigation


Sie sind hier:

Prof. Dr. Carsten Jentsch

Wirtschafts- und Sozialstatistik

Kontakt

CDI-Gebäude,
Raum 9
0231 755 - 3869
0231 755 - 5284
Fakultät Statistik
Technische Universität Dortmund
44221 Dortmund


Sprechstunde

  • Nach Vereinbarung

 

Kurzlebenslauf

Carsten Jentsch hat 2001-2007 Mathematik mit Nebenfach BWL an der TU Braunschweig studiert, wo er 2010 auch promoviert wurde. Nach einem Forschungsaufenthalt an der UC San Diego wurde er Postdoc an der VWL-Fakultät der Universität Mannheim und am SFB 884 „The Political Economy of Reforms“. Seit 2015 ist er Mitglied beim Eliteprogramm für PostdoktorandInnen der Baden-Württemberg Stiftung. Nach Professurvertretungen an den Universitäten Bayreuth und Mannheim arbeitet er seit Sommersemester 2018 an der TU Dortmund.

 

Arbeitsgebiete

Die Forschungsinteressen von Carsten Jentsch liegen im Bereich der mathematischen Statistik mit Schwerpunkt auf der methodischen Entwicklung und Implementierung von Schätz- und Testverfahren sowie auf der Modellierung von zeitlich und/oder räumlich abhängigen Daten und deren Anwendung in den Wirtschafts- und Sozialwissenschaften. Er beschäftigt sich mit verschiedenen Themen aus der Zeitreihenanalyse/Zeitreihenökonometrie, wobei er verstärkt Methoden aus dem Spektralbereich verwendet. Insbesondere sind Bootstrapverfahren für abhängige Daten ein wesentlicher Gegenstand seiner Forschung. Weiterhin interessiert er sich für statistische Methoden für stochastische Netzwerke und die statistische Analyse von Textdaten.

 

Aktuelle Einreichungen

Jentsch, C. & C. H. Weiß. Bootstrapping INAR models. Working Paper.

Jentsch, C., Leucht, A., Meyer, M., & C. Beering. Empirical characteristic functions-based estimation and distance correlation for locally stationary processes. Working Paper.

Jentsch, C. & K. Lunsford. Proxy SVARs: Asymptotic Theory, Bootstrap Inference, and the Effects of Income Tax Changes in the United States. Working Paper.

Jentsch, C., Lee, E. R. & E. Mammen. Statistical inference on party positions from texts: statistical modeling, bootstrap and adjusting for time effects.

 

Publikationen

Meyer, M., Jentsch, C. and Kreiss, J.-P. (2017). Baxter's Inequality and Sieve Bootstrap for Random Fields. Bernoulli 23, No. 4B, 2988-3020.

Bandyopadhyay, S., Jentsch, C. and Subba Rao, S. (2016). A spectral domain test for stationarity of spatio-temporal data. Journal of Time Series Analysis, 38, no. 2, 326-351.

Jentsch, C. and Kirch, C. (2016). How much information does dependence between wavelet coefficients contain? Journal of the American Statistical Association, 111, no. 515, 1330–1345. R Code.

Jentsch, C. and Steinmetz, J. (2016). A Connectedness Analysis of German Financial Institutions during the Financial Crisis in 2008. Banks and Bank Systems, 11, No. 4.

Jentsch, C. and Leucht, A. (2016). Bootstrapping sample quantiles of discrete data. Annals of the Institute of Statistical Mathematics 68, No. 3, 491-539.

Brüggemann, R., Jentsch, C., and Trenkler, C. (2016). Inference in VARs with Conditional Heteroskedasticity of Unknown Form. Journal of Econometrics 191, 69-85.

Jentsch, C. and Politis, D. N. (2015). Covariance matrix estimation and linear process bootstrap for multivariate time series of possibly increasing dimension. The Annals of Statistics 43, No. 3, 1117-1140. Supplement, R Code.

Jentsch, C., Paparoditis, E., and Politis, D. N. (2015). Block bootstrap theory for multivariate integrated and cointegrated time series. Journal of Time Series Analysis 36, No. 3, 416-441.

Jentsch, C. and Pauly, M. (2015). Testing equality of spectral densities using randomization techniques. Bernoulli 21, No. 2, 697-739. Supplement.

Jentsch, C. and Subba Rao, S. (2015). A test for second order stationarity of a multivariate time series. Journal of Econometrics 185, No. 1, 124-161. R Code.

Jentsch, C. and Politis, D. N. (2013) Valid resampling of higher order statistics using linear process bootstrap and autoregressive sieve bootstrap. Communications in Statistics - Theory and Methods 42, No. 7, 1277-1293.

Jentsch, C., Kreiss, J.-P., Mantalos, P. and Paparoditis, E. (2012). Hybrid bootstrap aided unit root testing. Computational Statistics 27, No. 4, 779-797.

Jentsch, C. (2012). A new frequency domain approach of testing for covariance stationarity and for periodic stationarity in multivariate linear processes. Journal of Time Series Analysis 33, No. 2, 177-192.

Jentsch, C. and Mammen, E. (2012). Discussion on the paper ‘‘Bootstrap for dependent data: A review’’ by Jens-Peter Kreiss and Efstathios Paparoditis. Journal of the Korean Statistical Society 40, No. 4, 391-392.

Jentsch, C. and Pauly, M. (2012). A note on periodogram-based distances for comparing spectral densities. Statistics and Probability Letters 82, No. 1, 158-164.

Jentsch, C. and Politis, D. N. (2011). The multivariate linear process bootstrap. In: Proceedings of the 17th European Young Statisticians Meeting (EYSM).

Jentsch, C. und Kreiss, J.-P. (2010). The multiple hybrid Bootstrap - Resampling multivariate linear processes. Journal of Multivariate Analysis 101, No. 10, 2320-2345.