Analyzing paired-comparison data in R using probabilistic choice models

Florian Wickelmaier

The R User Conference, August 12-14, 2008

2 Survey: perceived health risk of drugs

3 Conclusions

Probabilistic choice models

Goal: Scaling of psychological attributes

Procedure:

Participants are not asked to provide a numerical judgment (e.g., on a rating scale), but their behavior in a choice situation is observed. Scaling follows from modeling the data.

- Psychological theory of decision making
- Easy task for participants: pairwise comparison between alternatives, avoiding "scale usage heterogeneity"
- Measurement-theoretical foundation: testable conditions for numerical representation, unique scale level

Probabilistic choice models: applications

Main areas of application: consumer research, opinion surveys, sensory evaluation, psychophysical scaling

- Decision between insurance packages (McGuire & Davison, 1991, N = 14000)
- Political choice (Tversky & Sattath, 1979)
- Ranking of universities (Dittrich et al., 1998)
- Experimental perception research:
 - Measurement of pain (Matthews & Morris, 1995)
 - Taste, food quality (Bradley & Terry, 1952; Lukas, 1991; Duineveld et al., 1999)
 - Facial attractiveness (Bäuml, 1994)
 - Unpleasantness of environmental sounds (Ellermeier et al., 2004; Zimmer et al., 2004)
 - Sound quality of reproduction systems (Choisel & Wickelmaier, 2007)

Choice models (1): Bradley-Terry-Luce (BTL) model

Choice of an alternative (x, y, ...) is probabilistic and depends on the weight (strength) of the alternative (u(x), u(y), ...)

BTL model equations:

$$P_{xy} = \frac{u(x)}{u(x) + u(y)} = \frac{1}{1 + \frac{k \cdot u(y)}{k \cdot u(x)}}$$

- *P_{xy}*: probability of choosing alternative *x* over *y* in a paired comparison
- $u(\cdot)$: ratio scale of the stimuli
- BTL model very parsimonious: only n 1 free parameters, n = number of stimuli
- BTL imposes strong restrictions on the choice probabilities

Independence of irrelevant alternatives (IIA)

Choice between two options is independent of the context provided by the choice set

$$\frac{P(x, \{x, y\})}{P(y, \{x, y\})} = \frac{P(x, \{x, y, z\})}{P(y, \{x, y, z\})}$$

Problem: similarity between groups of stimuli may cause IIA to fail (Debreu, 1960; Rumelhart & Greeno, 1971; Zimmer et al., 2004; Choisel & Wickelmaier, 2007)

Consequence of IIA: strong stochastic transitivity

 $P_{xy} \ge 0.5, P_{yz} \ge 0.5 \Rightarrow P_{xz} \ge \max\{P_{xy}, P_{yz}\}$

Choice models (2): "Elimination by aspects" (EBA) (Tversky, 1972)

Alternatives (stimuli) are characterized by various features (aspects)

Choice is based on a hidden (sequential) elimination process:

- Aspects are chosen with a probability proportional to their weight (strength)
- Stimuli without the desired aspects are eliminated from the set of alternatives, until only one stimulus remains
- Only the discriminating aspects influence the decision
- \rightarrow EBA model does not require context independence (IIA)
- ightarrow Bradley-Terry-Luce (BTL) model is a special case of EBA

Elimination by aspects (EBA): model equations

Stimuli x, y, \ldots characterized by a set of aspects x', y', \ldots

 $x' \setminus y'$: aspects belonging to x, but not to y $u(\cdot)$: ratio scale of the aspects Scale value of x equals the sum of the characterizing aspect values

Example:

$$x' = \{\alpha, \beta, \zeta\}, \ y' = \{\gamma, \delta, \varepsilon, \zeta\} \ \rightsquigarrow \ P_{xy} = \frac{u(\alpha) + u(\beta)}{u(\alpha) + u(\beta) + u(\gamma) + u(\delta) + u(\varepsilon)}$$

The eba package

• Provides functionality for fitting and testing probabilistic choice models: Bradley-Terry-Luce, elimination by aspects, preference tree, Thurstone-Mosteller

• Key functions

strans	Counting stochastic transitivity violations
eba	Fitting and testing EBA models
summary, anova	Extractor functions
plot, residuals	
group.test	Comparing samples of subjects
eba.order	Testing within-pair order effects

Manual

Wickelmaier, F. & Schmid, C. (2004). A Matlab function to estimate choice-model parameters from paired-comparison data. *Behavior Research Methods, Instruments, & Computers*, **36**, 29–40.

Survey: perceived health risk of drugs

- N = 192 stratified by sex and age, 48 in each subgroup
- Task: Which of the two drugs do you judge to be more dangerous for your health?
- Drugs

Alcohol	Tobacco
Cannabis	Ecstasy
Heroine	Cocaine

- Each participant did all $6 \cdot 5/2 = 15$ pairwise comparisons.
- Analyses performed separately in the four subgroups

Survey: perceived health risk of drugs 00000000

Descriptive statistics

Aggregate judgments (male participants, younger than 30)

	Alc	Tob	Can	Ecs	Her	Coo
Alc	0	28	35	10	4	7
Tob	20	0	18	2	0	3
Can	13	30	0	3	1	(
Ecs	38	46	45	0	1	17
Her	44	48	47	47	0	44
Coc	41	45	48	31	4	(

Probability of choosing x over y:

$$\hat{P}_{xy} = \frac{N_x}{N_x + N_y}$$

Example:

$$\hat{P}_{Alc,\,Tob} = \frac{28}{28+20} = 0.58$$

Counting the number of transitivity violations strans(dat) violations error.ratio mean.dev max.dev weak 0.00 0.0000 0.0000 0 moderate 1 0.05 0.0417 0.0417 5 0.25 0.0625 0.1458 strong Number of Tests: 20

BTL model

Fitting a BTL model using the eba() function

```
btl <- eba(dat)</pre>
```

Obtaining summary statistics and model tests

```
summary(btl)
```

The BTL model does not describe the data adequately $(G^2(10) = 24.94, p < .001)$.

EBA model with one additional aspect – EBA1

Model structure

Non-alcohol drugs share a feature that affects decision when comparing them with alcohol.

EBA model with two additional aspects - EBA2

Model structure

 $\mathsf{A}_{2} = \{\{\alpha\}, \{\beta, \eta\}, \{\gamma, \eta\}, \{\delta, \eta, \vartheta\}, \{\varepsilon, \eta, \vartheta\}, \{\zeta, \eta, \vartheta\}\}$

A2 <- list(c(1),c(2,7),c(3,7),c(4,7,8),c(5,7,8),c(6,7,8)) eba2 <- eba(dat, A2)

Three of the non-alcohol drugs share a feature that comes into play only when comparing them with the other drugs.

Model selection

Nested models can be compared using likelihood ratio tests.

а	.nova (1	btl, eba	a1,	eba2)								
	Model	Resid.	df	Resid.	Dev		Tes	st	\mathtt{Df}	LR	stat.	Pr(Chi)
1	btl		10	24.9	4225				NA		NA	NA
2	eba1		9	17.5	4611	1	vs	2	1	7.3	396143	0.006536
3	eba2		8	11.4	5401	2	vs	3	1	6.0	092099	0.013579

Non-nested models may be selected based on information criteria.

AIC(btl, eba1, eba2) df AIC btl 5 78.18143 eba1 6 72.78528 eba2 7 68.69318

Conclusion: The elimination-by-aspects model with two extra parameters (eba2) fits the data best.

Scales derived from EBA model

- Younger males judge heroine to be about 13 times as dangerous as alcohol.
- Older males judge heroine to be only about 8 times as dangerous as alcohol.

Comparing subsamples

Is the same scaling valid in several groups?

```
Comparing male participants younger and older than 30 years
```

```
males <- array(c(young, old), c(6,6,2))</pre>
```

<pre>group.test(males,</pre>			A2)								
	Df1	Df2	logLik1	logLik2	Deviance	Pr(> Chi)					
EBA.g	14	30	-60.49	-48.94	23.09	0.111307					
Group	7	14	-74.08	-60.49	27.18	0.000309	***				
Effect	0	7	-490.56	-74.08	832.96	< 2e-16	***				
Imbalance	1	30	-85.69	-85.69	0.00	1.000000					

The scales of perceived health risk are significantly different $(G^2(7) = 27.18, p = .0003)$ in the two groups.

Conclusions

- Pronounced differences between drugs w.r.t. perceived health risk
- Differences between male/female and younger/older participants
- Bradley-Terry-Luce model not valid in the male samples
- Elimination-by-aspects model with two additional parameters fits the data
- Elimination-by-aspects modeling is now easy to do using eba()

Thank you for your attention

florian.wickelmaier@uni-tuebingen.de

The 'eba' package http://CRAN.r-project.org

References

- Bäuml, K.-H. (1994). Upright versus upside-down faces: How interface attractiveness varies with orientation. Perception & Psychophysics, 56, 163–172.
- Bradley, R. A. & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired comparisons. *Biometrika*, 39, 324–345.
- Choisel, S. & Wickelmaier, F. (2007). Evaluation of multichannel reproduced sound: scaling auditory attributes underlying listener preference. *Journal of the Acoustical Society of America*, 121, 388–400.
- Debreu, G. (1960). Review of R. D. Luce's Individual choice behavior: A theoretical analysis. American Economic Review, 50, 186–188.
- Dittrich, R., Hatzinger, R., & Katzenbeisser (1998). Modelling the effect of subject-specific covariates in paired comparison studies withan application to university rankings. *Applied Statistics*, 47, 511–525.
- Duineveld, C. A. A., Arents, P., & King, B. M. (1999). Log-linear modelling of paired comparison data from consumer tests. Food Quality and Preference, 11, 63–70.
- Ellermeier, W., Mader, M., & Daniel, P. (2004). Scaling auditory unpleasantness according to the BTL model: Ratio-scale representation and psychoacoustical analysis. Acta Acustica united with Acustica, 90, 101–107.
- Lukas, J. (1991). BTL-Skalierung verschiedener Geschmacksqualitäten von Sekt (BTL scaling of different taste qualities of champagne). Zeitschrift f
 ür experimentelle und angewandte Psychologie, 38, 605–619.
- Matthews, J. N. S. & Morris, K. P. (1995). An application of Bradley-Terry-type models to the measurement of pain. Applied Statistics, 44, 243–255.
- McGuire, D. P. & Davison, M. L. (1991). Testing group differences in paired comparisons data. Psychological Review, 110, 171–182.
- Rumelhart, D. L. & Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models. Journal of Mathematical Psychology, 8, 370–381.
- Tversky, A. (1972). Elimination by aspects: a theory of choice. Psychological Review, 79, 281-299.
- Tversky, A. & Sattath, S. (1979). Preference trees. Psychological Review, 86, 542-573.
- Wickelmaier, F. & Schmid, C. (2004). A Matlab function to estimate choice model parameters from paired-comparison data. Behavior Research Methods, Instruments, & Computers, 36, 29–40.
- Zimmer, K., Ellermeier, W., & Schmid, C. (2004). Using probabilistic choice models to investigate auditory unpleasantness. Acta Acustica united with Acustica, 90, 1019–1028.

Additional slides

Predicting preference from specific auditory attibutes (Choisel & Wickelmaier, 2007, JASA)

Equal-preference contours for eight audio formats

