Why and how to use random forest variable importance measures (and how you shouldn't)

Carolin Strobl (LMU München) and Achim Zeileis (WU Wien)

carolin.strobl@stat.uni-muenchen.de useR! 2008, Dortmund Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Random forests

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Random forests

 have become increasingly popular in, e.g., genetics and the neurosciences Introduction

Construction R functions

Variable

importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Random forests

have become increasingly popular in, e.g., genetics and the neurosciences [imagine a long list of references here] Introduction

Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Random forests

- have become increasingly popular in, e.g., genetics and the neurosciences [imagine a long list of references here]
- can deal with "small n large p"-problems, high-order interactions, correlated predictor variables

Introduction

Construction

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Random forests

- have become increasingly popular in, e.g., genetics and the neurosciences [imagine a long list of references here]
- can deal with "small n large p"-problems, high-order interactions, correlated predictor variables
- are used not only for prediction, but also to assess variable importance

Introduction

Construction

Variable importance

> Tests for variable importance

Conditional importance

Summary

(Small) random forest

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

draw ntree bootstrap samples from original sample

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditiona importance

Summary

References

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲■ - のへで

- draw ntree bootstrap samples from original sample
- fit a classification tree to each bootstrap sample
 - $\Rightarrow \texttt{ntree} \text{ trees}$

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

- draw ntree bootstrap samples from original sample
- fit a classification tree to each bootstrap sample
 ntree trees
- creates diverse set of trees because
 - ► trees are instable w.r.t. changes in learning data ⇒ ntree different looking trees (bagging)
 - randomly preselect mtry splitting variables in each split
 ntree more different looking trees (random forest)

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

Random forests in R

- randomForest (pkg: randomForest)
 - reference implementation based on CART trees (Breiman, 2001; Liaw and Wiener, 2008)
 - for variables of different types: biased in favor of continuous variables and variables with many categories (Strobl, Boulesteix, Zeileis, and Hothorn, 2007)

cforest (pkg: party)

- based on unbiased conditional inference trees (Hothorn, Hornik, and Zeileis, 2006)
- + for variables of different types: unbiased when subsampling, instead of bootstrap sampling, is used (Strobl, Boulesteix, Zeileis, and Hothorn, 2007)

Introduction Construction R functions

importance

Tests for variable importance

Conditional importance

Summary

(Small) random forest

Introduction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 理ト ・ ヨト ・ ヨー ・ つへで

Measuring variable importance

Gini importance mean Gini gain produced by X_j over all trees

obj <- randomForest(..., importance=TRUE)
obj\$importance column: MeanDecreaseGini
importance(obj, type=2)</pre>

for variables of different types: biased in favor of continuous variables and variables with many categories

Introduction

Construction

Variable importance

Tests for variable importance

Conditional importance

Summary

Measuring variable importance

varimp(obj)

- permutation importance
 mean decrease in classification accuracy after
 permuting X_i over all trees
 - obj <- randomForest(..., importance=TRUE)
 obj\$importance column: MeanDecreaseAccuracy
 importance(obj, type=1)
 obj <- cforest(...)

```
for variables of different types: unbiased only when
subsampling is used as in cforest(..., controls =
cforest_unbiased())
```

Introduction

Construction

```
Variable
importance
```

Tests for variable importance

Conditional importance

Summary

```
くしゃ 本語を 本語を 本語を 本日を
```

The permutation importance

within each tree t

$$VI^{(t)}(\mathbf{x}_{j}) = \frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i} = \hat{y}_{i}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|} - \frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i} = \hat{y}_{i,\pi_{j}}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|}$$

 $\hat{y}_i^{(t)} = f^{(t)}(\mathbf{x}_i)$ = predicted class before permuting

 $\hat{y}_{i,\pi_j}^{(t)} = f^{(t)}(\mathbf{x}_{i,\pi_j})$ = predicted class after permuting X_j

$$\mathbf{x}_{i,\pi_j} = (x_{i,1}, \ldots, x_{i,j-1}, x_{\pi_j(i),j}, x_{i,j+1}, \ldots, x_{i,p})$$

Note: $VI^{(t)}(\mathbf{x}_j) = 0$ by definition, if X_j is not in tree t

ntroduction

Construction

Variable importance

Tests for variable importance

Conditional importance

Summary

The permutation importance

over all trees:

1. raw importance

 $VI(\mathbf{x}_j) = \frac{\sum_{t=1}^{ntree} VI^{(t)}(\mathbf{x}_j)}{ntree}$

obj <- randomForest(..., importance=TRUE)
importance(obj, type=1, scale=FALSE)</pre>

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 西ト ・ ヨト ・ ヨト ・ りゃぐ

The permutation importance

over all trees:

2. scaled importance (z-score)

$$\frac{VI(\mathbf{x}_j)}{\frac{\hat{\sigma}}{\sqrt{ntree}}} = z_j$$

obj <- randomForest(..., importance=TRUE)
importance(obj, type=1, scale=TRUE) (default)</pre>

Introduction

Construction

Variable importance

> Tests for variable importance

Conditional importance

Summary

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for variable selection purposes

Introduction Construction R functions

importance

Tests for variable importance

Conditional importance

Summary

References

うしん 明 ふかとうかん 中心 キョー

for variable selection purposes

Breiman and Cutler (2008): simple significance test based on normality of z-score randomForest, scale=TRUE + α-quantile of N(0,1)

Variable importance

Tests for variable importance

Conditiona importance

Summary

References

くしゃ 本語を 本語を 本語を 本日を

for variable selection purposes

- Breiman and Cutler (2008): simple significance test based on normality of z-score randomForest, scale=TRUE + α-quantile of N(0,1)
- Diaz-Uriarte and Alvarez de Andrés (2006): backward elimination (throw out least important variables until out-of-bag prediction accuracy drops) varSelRF (pkg: varSelRF), dep. on randomForest

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

for variable selection purposes

- Breiman and Cutler (2008): simple significance test based on normality of z-score randomForest, scale=TRUE + α-quantile of N(0,1)
- Diaz-Uriarte and Alvarez de Andrés (2006): backward elimination (throw out least important variables until out-of-bag prediction accuracy drops) varSelRF (pkg: varSelRF), dep. on randomForest
- Diaz-Uriarte (2007) and Rodenburg et al. (2008): plots and significance test (randomly permute response values to mimic the overall null hypothesis that none of the predictor variables is relevant = baseline)

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

problems of these approaches:

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

problems of these approaches:

 (at least) Breiman and Cutler (2008): strange statistical properties (Strobl and Zeileis, 2008) Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

problems of these approaches:

- (at least) Breiman and Cutler (2008): strange statistical properties (Strobl and Zeileis, 2008)
- all: preference of correlated predictor variables (see also Nicodemus and Shugart, 2007; Archer and Kimes, 2008)

Introduction Construction R functions

Variable importance

> Tests for variable importance

Conditional importance

Summary

Breiman and Cutler's test

under the null hypothesis of zero importance:

$$z_j \stackrel{as.}{\sim} N(0,1)$$

if z_j exceeds the α -quantile of N(0,1) \Rightarrow reject the null hypothesis of zero importance for variable X_j

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 語・ ・ 語・ ・ 語・ ・ 日・

Raw importance

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

z-score and power

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Findings

z-score and power

- increase in ntree
- decrease in sample size

\Rightarrow rather use raw, unscaled permutation importance!

```
importance(obj, type=1, scale=FALSE)
varimp(obj)
```

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

くしゃ 本語を 本語を 本語を 本日を

What null hypothesis were we testing in the first place?

obs	Y	X_j	Ζ
1	<i>y</i> ₁	$X_{\pi_i(1),j}$	<i>z</i> ₁
:	:	:	:
;		•	• •
'	yi	$x_{\pi_j(i),j}$	Zi
:	÷	:	÷
n	Уn	$X_{\pi_j(n),j}$	Zn

R functions

 $egin{aligned} &\mathcal{H}_0: X_j \perp Y, Z ext{ or } X_j \perp Y \wedge X_j \perp Z \ &\mathcal{P}(Y, X_j, Z) \stackrel{\mathcal{H}_0}{=} \mathcal{P}(Y, Z) \cdot \mathcal{P}(X_j) \end{aligned}$

くしゃ 本語を 本語を 本語を 本日を

What null hypothesis were we testing in the first place?

the current null hypothesis reflects independence of X_j from both Y and the remaining predictor variables Z Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 語・ ・ 語・ ・ 語・ ・ 日・

What null hypothesis were we testing in the first place?

the current null hypothesis reflects independence of X_j from both Y and the remaining predictor variables Z

 \Rightarrow a high variable importance can result from violation of

either one!

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

くしゃ 本語を 本語を 本語を 本日を

Suggestion: Conditional permutation scheme

						introduction				
	obs	Y	X_{j}	Ζ		Construction				
	1	V1	$X_{\pi i \pi}$ (1) i	$z_1 = a$		R functions				
	2	71	$n_j _{Z=a(1),j}$	- ·		Variable				
	3	<i>y</i> ₃	$X_{\pi_{j Z=a}(3),j}$	$z_{3} = a$		importance				
	27	<i>Y</i> 27	$X_{\pi_{j Z=a}(27),j}$	<i>z</i> ₂₇ = <i>a</i>		Tests for varia importance				
	6	<i>Y</i> 6	$X_{\pi_{j Z=b}(6),j}$	$z_6 = b$		Conditional importance				
	14	<i>Y</i> 14	$X_{\pi_{j Z=b}(14),j}$	$z_{14} = b$		Summary				
	33	<i>Y</i> 33	$X_{\pi_{j Z=b}(33),j}$	$z_{33} = b$		References				
	÷	:	:	÷						
	-									
$H_0: X_j \perp Y Z$										
	$P(Y, X_j Z) \stackrel{H_0}{=} P(Y Z) \cdot P(X_j Z)$									
~r		V 7	$H_0 = P(\mathbf{V})$	7)						
or	r(1	∧j, ∠	P(r) = P(r)	∠)						

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

use any partition of the feature space for conditioning

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

- use any partition of the feature space for conditioning
- here: use binary partition already learned by tree (use cutpoints as bisectors of feature space)

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- use any partition of the feature space for conditioning
- here: use binary partition already learned by tree (use cutpoints as bisectors of feature space)
- condition on correlated variables or select some

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- use any partition of the feature space for conditioning
- here: use binary partition already learned by tree (use cutpoints as bisectors of feature space)
- condition on correlated variables or select some

Strobl et al. (2008)
available in cforest from version 0.9-994: varimp(obj,
conditional = TRUE)

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

References

・ロト ・ 西ト ・ ヨト ・ ヨト ・ りゃぐ

Simulation study

► dgp:
$$y_i = \beta_1 \cdot x_{i,1} + \dots + \beta_{12} \cdot x_{i,12} + \varepsilon_i$$
, $\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, 0.5)$
► $X_1, \dots, X_{12} \sim N(0, \Sigma)$

	$\begin{pmatrix} 1 \end{pmatrix}$	0.9	0.9	0.9	0		0)	Tests for vi
	0.9	1	0.9	0.9	0		0	importance Conditional
	0.9	0.9	1	0.9	0		0	importance
Σ =	0.9	0.9	0.9	1	0		0	Summary
	0	0	0	0	1		0	Reference
	:	÷	÷	÷	÷	·	0	
	0	0	0	0	0	0	1)	

◆□▶ < @▶ < E▶ < E▶ = 9000</p>

R functions

Results

Peptide-binding data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction Construction R functions

importance

Tests for variable importance

Conditional importance

Summary

References

(ロト (個) (E) (E) (E) (の)()

if your predictor variables are of different types: use cforest (pkg: party) with default option controls = cforest_unbiased()

with permutation importance varimp(obj)

Introduction

Construction

R functions

Variable importance

Tests for variable importance

Conditional importance

Summary

if your predictor variables are of different types: use cforest (pkg: party) with default option controls = cforest_unbiased()

with permutation importance varimp(obj)

otherwise: feel free to use cforest (pkg: party)
with permutation importance varimp(obj)
or randomForest (pkg: randomForest)
with permutation importance importance(obj, type=1)
or Gini importance importance(obj, type=2)
but don't fall for the z-score! (i.e. set scale=FALSE)

Introduction Construction R functions Variable importance

Tests for variable importance

Conditional importance

Summary

if your predictor variables are of different types: use cforest (pkg: party) with default option controls = cforest_unbiased()

with permutation importance varimp(obj)

otherwise: feel free to use cforest (pkg: party)
with permutation importance varimp(obj)
or randomForest (pkg: randomForest)
with permutation importance importance(obj, type=1)
or Gini importance importance(obj, type=2)
but don't fall for the z-score! (i.e. set scale=FALSE)

if your predictor variables are <u>highly correlated</u>: use the conditional importance in cforest (pkg: party)

Introduction Construction R functions Variable importance

Tests for variable importance

Conditional importance

Summary

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditiona importance

Summary

References

▲ロト ▲園ト ▲目ト ▲目ト 三目 - のへで

- Archer, K. J. and R. V. Kimes (2008). Empirical characterization of random forest variable importance measures. *Computational Statistics & Data Analysis 52*(4), 2249–2260.
- Breiman, L. (2001). Random forests. *Machine Learning* 45(1), 5–32.
- Breiman, L. and A. Cutler (2008). Random forests Classification manual. Website accessed in 1/2008; http://www.math.usu.edu/~adele/forests.
- Breiman, L., A. Cutler, A. Liaw, and M. Wiener (2006). Breiman and Cutler's Random Forests for Classification and Regression. R package version 4.5-16.
- Diaz-Uriarte, R. (2007). GeneSrF and varselrf: A web-based tool and R package for gene selection and classification using random forest. BMC Bioinformatics 8:328.

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional mportance

Summary

- Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional inference framework. *Journal of Computational and Graphical Statistics* 15(3), 651–674.
- Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007).
 Bias in random forest variable importance measures:
 Illustrations, sources and a solution. *BMC Bioinformatics 8:25*.
- Strobl, C. and A. Zeileis (2008). Danger: High power! exploring the statistical properties of a test for random forest variable importance. In *Proceedings of the 18th International Conference on Computational Statistics, Porto, Portugal.*
- Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis (2008). Conditional variable importance for random forests. *BMC Bioinformatics 9:307*.

Introduction Construction R functions

Variable importance

Tests for variable importance

Conditional mportance

Summary