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Introduction

Random forests

I have become increasingly popular in, e.g., genetics and

the neurosciences

[imagine a long list of references here]

I can deal with “small n large p”-problems, high-order

interactions, correlated predictor variables

I are used not only for prediction, but also to assess

variable importance
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Construction of a random forest

I draw ntree bootstrap samples from original sample

I fit a classification tree to each bootstrap sample

⇒ ntree trees

I creates diverse set of trees because

I trees are instable w.r.t. changes in learning data

⇒ ntree different looking trees (bagging)

I randomly preselect mtry splitting variables in each split

⇒ ntree more different looking trees (random forest)
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Random forests in R

I randomForest (pkg: randomForest)

I reference implementation based on CART trees

(Breiman, 2001; Liaw and Wiener, 2008)

– for variables of different types: biased in favor of

continuous variables and variables with many categories

(Strobl, Boulesteix, Zeileis, and Hothorn, 2007)

I cforest (pkg: party)

I based on unbiased conditional inference trees

(Hothorn, Hornik, and Zeileis, 2006)

+ for variables of different types: unbiased when

subsampling, instead of bootstrap sampling, is used

(Strobl, Boulesteix, Zeileis, and Hothorn, 2007)
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Measuring variable importance

I Gini importance

mean Gini gain produced by Xj over all trees

I obj <- randomForest(..., importance=TRUE)

obj$importance column: MeanDecreaseGini

importance(obj, type=2)

for variables of different types: biased in favor of continuous

variables and variables with many categories
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Measuring variable importance

I permutation importance

mean decrease in classification accuracy after

permuting Xj over all trees

I obj <- randomForest(..., importance=TRUE)

obj$importance column: MeanDecreaseAccuracy

importance(obj, type=1)

I obj <- cforest(...)

varimp(obj)

for variables of different types: unbiased only when

subsampling is used as in cforest(..., controls =

cforest unbiased())
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The permutation importance

within each tree t

VI (t)(xj) =

∑
i∈B

(t) I
(
yi = ŷ

(t)
i

)
∣∣∣B(t)

∣∣∣ −

∑
i∈B

(t) I
(
yi = ŷ

(t)
i ,πj

)
∣∣∣B(t)

∣∣∣
ŷ

(t)
i = f (t)(xi ) = predicted class before permuting

ŷ
(t)
i ,πj

= f (t)(xi ,πj
) = predicted class after permuting Xj

xi ,πj
= (xi ,1, . . . , xi ,j−1, xπj (i),j , xi ,j+1, . . . , xi ,p

)
Note: VI (t)(xj) = 0 by definition, if Xj is not in tree t
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The permutation importance

over all trees:

1. raw importance

VI (xj) =

∑ntree
t=1 VI (t)(xj)

ntree

I obj <- randomForest(..., importance=TRUE)

importance(obj, type=1, scale=FALSE)
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The permutation importance

over all trees:

2. scaled importance (z-score)

VI (xj)
σ̂√

ntree

= zj

I obj <- randomForest(..., importance=TRUE)

importance(obj, type=1, scale=TRUE) (default)
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Tests for variable importance

for variable selection purposes

I Breiman and Cutler (2008): simple significance test

based on normality of z-score

randomForest, scale=TRUE + α-quantile of N(0,1)

I Diaz-Uriarte and Alvarez de Andrés (2006): backward

elimination (throw out least important variables until

out-of-bag prediction accuracy drops)

varSelRF (pkg: varSelRF), dep. on randomForest

I Diaz-Uriarte (2007) and Rodenburg et al. (2008): plots

and significance test (randomly permute response values

to mimic the overall null hypothesis that none of the

predictor variables is relevant = baseline)
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Tests for variable importance

problems of these approaches:

I (at least) Breiman and Cutler (2008): strange statistical

properties (Strobl and Zeileis, 2008)

I all: preference of correlated predictor variables (see also

Nicodemus and Shugart, 2007; Archer and Kimes, 2008)
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Breiman and Cutler’s test

under the null hypothesis of zero importance:

zj
as.∼ N(0, 1)

if zj exceeds the α-quantile of N(0,1) ⇒ reject the

null hypothesis of zero importance for variable Xj
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Raw importance

relevance
0.0 0.1 0.2 0.3 0.4

ntree = 100
mean importance

0.0 0.1 0.2 0.3 0.4

ntree = 200
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Findings

z-score and power

I increase in ntree

I decrease in sample size

⇒ rather use raw, unscaled permutation importance!

importance(obj, type=1, scale=FALSE)

varimp(obj)
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What null hypothesis were we testing

in the first place?

obs Y Xj Z

1 y1 xπj (1),j z1

...
...

...
...

i yi xπj (i),j zi

...
...

...
...

n yn xπj (n),j zn

H0 : Xj ⊥ Y ,Z or Xj ⊥ Y ∧ Xj ⊥ Z

P(Y ,Xj ,Z )
H0= P(Y ,Z ) · P(Xj)
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What null hypothesis were we testing

in the first place?

the current null hypothesis reflects independence of Xj from

both Y and the remaining predictor variables Z

⇒ a high variable importance can result from violation of

either one!
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Suggestion: Conditional permutation scheme

obs Y Xj Z

1 y1 xπj|Z=a(1),j z1 = a

3 y3 xπj|Z=a(3),j z3 = a

27 y27 xπj|Z=a(27),j z27 = a

6 y6 xπj|Z=b(6),j z6 = b

14 y14 xπj|Z=b(14),j z14 = b

33 y33 xπj|Z=b(33),j z33 = b
...

...
...

...

H0 : Xj ⊥ Y |Z

P(Y ,Xj |Z )
H0= P(Y |Z ) · P(Xj |Z )

or P(Y |Xj ,Z )
H0= P(Y |Z )
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Technically

I use any partition of the feature space for conditioning

I here: use binary partition already learned by tree

(use cutpoints as bisectors of feature space)

I condition on correlated variables or select some

Strobl et al. (2008)

available in cforest from version 0.9-994: varimp(obj,

conditional = TRUE)
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Simulation study

I dgp: yi = β1 · xi ,1 + · · ·+β12 · xi ,12 + εi , εi
i .i .d .∼ N(0, 0.5)

I X1, . . . ,X12 ∼ N(0,Σ)

Σ =



1 0.9 0.9 0.9 0 · · · 0

0.9 1 0.9 0.9 0 · · · 0

0.9 0.9 1 0.9 0 · · · 0

0.9 0.9 0.9 1 0 · · · 0

0 0 0 0 1 · · · 0
...

...
...

...
...

. . . 0

0 0 0 0 0 0 1



Xj X1 X2 X3 X4 X5 X6 X7 X8 · · · X12

βj 5 5 2 0 -5 -5 -2 0 · · · 0
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Results
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Peptide-binding data
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Summary

if your predictor variables are of different types:

use cforest (pkg: party) with default option controls =

cforest unbiased()

with permutation importance varimp(obj)

otherwise: feel free to use cforest (pkg: party)

with permutation importance varimp(obj)

or randomForest (pkg: randomForest)

with permutation importance importance(obj, type=1)

or Gini importance importance(obj, type=2)

but don’t fall for the z-score! (i.e. set scale=FALSE)

if your predictor variables are highly correlated: use the

conditional importance in cforest (pkg: party)
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