

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Local Classification Methods for Heterogeneous Classes

Julia Schiffner and Claus Weihs

Department of Statistics, Dortmund University of Technology SFB 475 'Complexity Reduction in Multivariate Data Structures'

August 13, 2008

- 1 Introduction Heterogeneous Classes
- 2 Three Classification Methods Based on Mixture Models
- 3 Local Fisher Discriminant Analysis LFDA
- 4 Summary & Outlook

package klaR:

miscellaneous functions for classification and visualization

classification into K given classes c₁,..., c_K

 underlying assumption for many classification methods: random feature x homogeneous within the classes and heterogeneous across the classes

problem: heterogeneous classes

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

package klaR:

miscellaneous functions for classification and visualization

• classification into K given classes c_1, \ldots, c_K

 underlying assumption for many classification methods: random feature x homogeneous within the classes and heterogeneous across the classes

problem: heterogeneous classes

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うらる

package klaR:

miscellaneous functions for classification and visualization

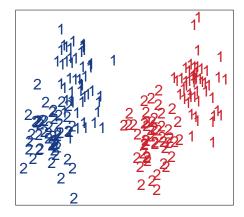
• classification into K given classes c_1, \ldots, c_K

 underlying assumption for many classification methods: random feature x homogeneous within the classes and heterogeneous across the classes

problem: heterogeneous classes

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ うらる

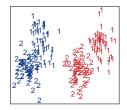
problem: heterogeneous classes



J. Schiffner and C. Weihs Local Classification Methods for Heterogeneous Classes

Sac

problem: heterogeneous classes

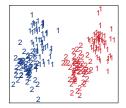


San

way out: local methods

- classification methods based on mixture models, e.g. mixture discriminant analysis (MDA)
- other prototype methods: K-means, learning vector quantization (LVQ)
- k-nearest-neighbor classifier (kNN)
- local likelihood methods: localized logistic regression, localized LDA (LLDA, in klaR)
- Iocal Fisher discriminant analysis (LFDA)
- tree-based methods: CART, random forests

problem: heterogeneous classes



way out: local methods

- classification methods based on mixture models, e.g. mixture discriminant analysis (MDA)
- other prototype methods: K-means, learning vector quantization (LVQ)
- k-nearest-neighbor classifier (kNN)
- local likelihood methods: localized logistic regression, localized LDA (LLDA, in klaR)
- local Fisher discriminant analysis (LFDA)
- tree-based methods: CART, random forests

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

common components model (Titsias & Likas, 2001)

・ロト ・ 四 ト ・ 回 ト ・

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

common components model (Titsias & Likas, 2001)

・ロト ・ 同ト ・ ヨト ・ ヨト

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

$$f(x) = \sum_{k=1}^{K} p_k \sum_{j=1}^{J} \pi_{jk} f(x | c_k, s_j)$$

common components model (Titsias & Likas, 2001)

・ロト ・ 同ト ・ ヨト ・ ヨト

San

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

$$f(x \mid \theta) = \sum_{j=1}^{J} \pi_j \sum_{k=1}^{K} p_{kj} f(x \mid \mu_{kj}, \Sigma_{kj})$$

common components model (Titsias & Likas, 2001)

・ロト ・ 同ト ・ ヨト ・ ヨト

San

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

$$f(x \mid \theta) = \sum_{j=1}^{J} \pi_j \sum_{k=1}^{K} p_{kj} f(x \mid \mu_{kj}, \Sigma_{kj})$$

common components model (Titsias & Likas, 2001)

$$f(x) = \sum_{k=1}^{K} p_k \sum_{j=1}^{J} \pi_{jk} f(x \mid s_j)$$

marginal density:

$$f(x) = \sum_{k=1}^{K} p_k f(x \mid c_k)$$

- model class conditional densities as mixtures
- data are generated by J sources s_i
- hierarchical mixture model (Titsias & Likas, 2002)

$$f(x \mid \theta) = \sum_{j=1}^{J} \pi_j \sum_{k=1}^{K} p_{kj} f(x \mid \mu_{kj}, \Sigma_{kj})$$

common components model (Titsias & Likas, 2001)

$$f(x \mid \theta) = \sum_{j=1}^{J} \pi_j \sum_{k=1}^{K} p_{kj} f(x \mid \mu_j, \Sigma_j) = \sum_{j=1}^{J} \pi_j f(x \mid \mu_j, \Sigma_j)$$

J. Schiffner and C. Weihs

class posterior estimation

step 1: estimate source posteriors assuming a

• simple mixture model (unsupervised, "hm1")

$$f(x \mid \varphi) = \sum_{j=1}^{J} \pi_j f(x \mid \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, \hat{\varphi})$

• common components model (supervised, "hm2")

$$f(x \mid \varphi_k) = \sum_{j=1}^J \pi_{jk} f(x \mid \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, c(x), \hat{\varphi}_{c(x)})$

step 2: ML estimation of π_j , p_{kj} , μ_{kj} , and Σ_{kj} depending on x and the source posteriors

class posterior estimation

step 1: estimate source posteriors assuming a

• simple mixture model (unsupervised, "hm1")

$$f(x \mid \varphi) = \sum_{j=1}^{J} \pi_j f(x \mid \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, \hat{\varphi})$

common components model (supervised, "hm2")

$$f(x \mid \varphi_k) = \sum_{j=1}^J \pi_{jk} f(x \mid \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, c(x), \hat{\varphi}_{c(x)})$

step 2: ML estimation of π_j , p_{kj} , μ_{kj} , and \sum_{kj} depending on x and the source posteriors

class posterior estimation

step 1: estimate source posteriors assuming a

• simple mixture model (unsupervised, "hm1")

$$f(\boldsymbol{x} | \varphi) = \sum_{j=1}^{J} \pi_j f(\boldsymbol{x} | \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, \hat{\varphi})$

common components model (supervised, "hm2")

$$f(x \mid \varphi_k) = \sum_{j=1}^J \pi_{jk} f(x \mid \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, c(x), \hat{\varphi}_{c(x)})$

step 2: ML estimation of π_j , p_{kj} , μ_{kj} , and \sum_{kj} depending on x and the source posteriors

class posterior estimation

step 1: estimate source posteriors assuming a

• simple mixture model (unsupervised, "hm1")

$$f(\boldsymbol{x} | \varphi) = \sum_{j=1}^{J} \pi_j f(\boldsymbol{x} | \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, \hat{\varphi})$

common components model (supervised, "hm2")

$$f(\boldsymbol{x} | \varphi_k) = \sum_{j=1}^J \pi_{jk} f(\boldsymbol{x} | \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, c(x), \hat{\varphi}_{c(x)})$

step 2: ML estimation of π_j , p_{kj} , μ_{kj} , and \sum_{kj} depending on x and the source posteriors

class posterior estimation

step 1: estimate source posteriors assuming a

• simple mixture model (unsupervised, "hm1")

$$f(\boldsymbol{x} | \boldsymbol{\varphi}) = \sum_{j=1}^{J} \pi_j f(\boldsymbol{x} | \mu_j, \boldsymbol{\Sigma}_j)$$

EM algorithm $\Rightarrow P(s_j | x, \hat{\varphi})$

common components model (supervised, "hm2")

$$f(x | \varphi_k) = \sum_{j=1}^J \pi_{jk} f(x | \mu_j, \Sigma_j)$$

EM algorithm $\Rightarrow P(s_j | x, c(x), \hat{\varphi}_{c(x)})$

step 2: ML estimation of π_j , p_{kj} , μ_{kj} , and Σ_{kj} depending on x and the source posteriors

Common Components Classifier

class posterior estimation

estimate π_j , p_{kj} , μ_j , and Σ_j by means of the EM algorithm

some details

 initialization of the EM algorithm: repeated execution of kmeans, posterior deviance

• number of sources J:

assumed to be known in advance

choice of J by means of a validation data set

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Common Components Classifier

class posterior estimation

estimate π_j , p_{kj} , μ_j , and Σ_j by means of the EM algorithm

some details

- initialization of the EM algorithm: repeated execution of kmeans, posterior deviance
- number of sources J:

assumed to be known in advance

choice of J by means of a validation data set

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Common Components Classifier

class posterior estimation

estimate π_j , p_{kj} , μ_j , and Σ_j by means of the EM algorithm

some details

- initialization of the EM algorithm: repeated execution of kmeans, posterior deviance
- number of sources J:

assumed to be known in advance

choice of J by means of a validation data set

- hm.cc: generic function with methods for classes "data.frame", "matrix", and "formula"
- hm.cc.start: initialization of the EM algorithm
- arguments for hm.cc:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
J	number of sources
method	"hm1", "hm2", "cc"
tries, iter, eps threshold	for hm.cc.start and EM algorithm for subclass pruning in "hm1" and "hm2"

• predict-method for class "hm.cc"

- hm.cc: generic function with methods for classes "data.frame", "matrix", and "formula"
- hm.cc.start: initialization of the EM algorithm
- arguments for hm.cc:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
J	number of sources
method	"hm1", "hm2", "cc"
tries, iter, eps	for hm.cc.start and EM algorithm
threshold	for subclass pruning in "hm1" and "hm2"

predict-method for class "hm.cc"

- hm.cc: generic function with methods for classes "data.frame", "matrix", and "formula"
- hm.cc.start: initialization of the EM algorithm
- arguments for hm.cc:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
J	number of sources
method	"hm1", "hm2", "cc"
tries, iter, eps	for hm.cc.start and EM algorithm
threshold	for subclass pruning in "hm1" and "hm2"

predict-method for class "hm.cc"

- supervised linear dimensionality reduction and classification
- FDA transformation matrix:

$$T_{FDA} = \arg\max_{T} \left(tr \left(T'S_w T \right)^{-1} T'S_b T \right)$$

- FDA projection: sample pairs in the same class are made close and sample pairs in different classes are separated from each other
- reduced dimension at most K 1

・ロト ・ 同ト ・ ヨト ・ ヨト

- supervised linear dimensionality reduction and classification
- FDA transformation matrix:

$$T_{FDA} = \arg\max_{T} \left(tr \left(T' S_w T \right)^{-1} T' S_b T \right)$$

• FDA projection: sample pairs in the same class are made close and sample pairs in different classes are separated from each other

reduced dimension at most K – 1

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

- supervised linear dimensionality reduction and classification
- FDA transformation matrix:

$$T_{FDA} = rg\max_{T} \left(tr \left(T'S_w T
ight)^{-1} T'S_b T
ight)$$

• FDA projection: sample pairs in the same class are made close and sample pairs in different classes are separated from each other

・ ロ ト メ 同 ト メ 三 ト ・

Dar

- supervised linear dimensionality reduction and classification
- FDA transformation matrix:

$$T_{FDA} = rg\max_{T} \left(tr \left(T'S_w T
ight)^{-1} T'S_b T
ight)$$

- FDA projection: sample pairs in the same class are made close and sample pairs in different classes are separated from each other
- reduced dimension at most K 1

(ロ) (字) (日) (日) (日)

Sar

- supervised linear dimensionality reduction (Sugiyama, 2007) into *arbitrary* dimensional spaces
- heterogeneous classes: preserve the within-class local structure by introducing an affinity matrix A into the calculation of S_w and S_b (A_{ij}: affinity between x_i and x_j) ⇒ downweight influence of far apart sample pairs in the same class
- LFDA transformation matrix:

$$T_{LFDA} = \arg\max_{T} \left(tr \left(T' S_{w}^{A} T \right)^{-1} T' S_{b}^{A} T \right)$$

 LFDA projection: only nearby sample pairs in the same class are made close and sample pairs in different classes are separated from each other

《日》《圖》《王》《王》

- supervised linear dimensionality reduction (Sugiyama, 2007) into *arbitrary* dimensional spaces
- heterogeneous classes: preserve the within-class local structure by introducing an affinity matrix A into the calculation of S_w and S_b (A_{ij}: affinity between x_i and x_j) ⇒ downweight influence of far apart sample pairs in the same class
- LFDA transformation matrix:

$$T_{LFDA} = \arg\max_{T} \left(tr \left(T' S_{w}^{A} T \right)^{-1} T' S_{b}^{A} T \right)$$

 LFDA projection: only nearby sample pairs in the same class are made close and sample pairs in different classes are separated from each other

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

- supervised linear dimensionality reduction (Sugiyama, 2007) into *arbitrary* dimensional spaces
- heterogeneous classes: preserve the within-class local structure by introducing an affinity matrix A into the calculation of S_w and S_b (A_{ij}: affinity between x_i and x_j) ⇒ downweight influence of far apart sample pairs in the same class
- LFDA transformation matrix:

$$T_{LFDA} = \arg\max_{T} \left(tr \left(T' S_{w}^{A} T \right)^{-1} T' S_{b}^{A} T \right)$$

 LFDA projection: only nearby sample pairs in the same class are made close and sample pairs in different classes are separated from each other

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

- supervised linear dimensionality reduction (Sugiyama, 2007) into *arbitrary* dimensional spaces
- heterogeneous classes: preserve the within-class local structure by introducing an affinity matrix A into the calculation of S_w and S_b (A_{ij}: affinity between x_i and x_j) ⇒ downweight influence of far apart sample pairs in the same class
- LFDA transformation matrix:

$$T_{LFDA} = \arg\max_{T} \left(tr \left(T' S_{w}^{A} T \right)^{-1} T' S_{b}^{A} T \right)$$

 LFDA projection: only nearby sample pairs in the same class are made close and sample pairs in different classes are separated from each other

・ロト ・ 同ト ・ ヨト ・ ヨト

LFDA – Classification

assumption: classes are composed from subclasses ckm

classification rule:

$$\hat{c}(x) = \arg\min_{k} \min_{m} \left\| T'_{LFDA} x - T'_{LFDA} \bar{x}_{km} \right\|$$

supervised case: subclasses are known

unsupervised case: subclasses are unknown

- spectral clustering within the K classes
- advantages: number of clusters is determined automatically, affinity matrix is used
- two methods: eigenvalues, eigenvectors

・ロト ・ 同ト ・ ヨト ・ ヨト

assumption: classes are composed from subclasses ckm

classification rule:

$$\hat{c}(x) = \arg\min_{k} \min_{m} \left\| T'_{LFDA} x - T'_{LFDA} \bar{x}_{km} \right\|$$

supervised case: subclasses are known

unsupervised case: subclasses are unknown

- spectral clustering within the K classes
- advantages: number of clusters is determined automatically, affinity matrix is used
- two methods: eigenvalues, eigenvectors

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

assumption: classes are composed from subclasses ckm

classification rule:

$$\hat{c}(x) = \arg\min_{k} \min_{m} \left\| T'_{LFDA} x - T'_{LFDA} \bar{x}_{km} \right\|$$

supervised case: subclasses are known

unsupervised case: subclasses are unknown

- spectral clustering within the K classes
- advantages: number of clusters is determined automatically, affinity matrix is used
- two methods: eigenvalues, eigenvectors

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

• lfda: generic function with methods for classes "data.frame", "matrix", and "formula"

arguments for lfda:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
subgrouping	subclass membership
dimension	desired dimensionality reduction
norm.method	method for normalizing the transforma- tion matrix
aff.method	method for calculation of the affinity ma- trix
cluster.method	method for calculation of the subclass centers

predict-method for class "lfda"

J. Schiffner and C. Weihs

Local Classification Methods for Heterogeneous Classes

イロト イ理ト イヨト イヨト

 \equiv

500

- lfda: generic function with methods for classes "data.frame", "matrix", and "formula"
- arguments for 1fda:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
subgrouping	subclass membership
dimension	desired dimensionality reduction
norm.method	method for normalizing the transforma- tion matrix
aff.method	method for calculation of the affinity ma- trix
cluster.method	method for calculation of the subclass centers

● predict-method for class "lfda"

= 990

- lfda: generic function with methods for classes "data.frame", "matrix", and "formula"
- arguments for 1fda:

argument	explanation
formula, data	for class "formula"
x, grouping	required if no formula is given
subgrouping	subclass membership
dimension	desired dimensionality reduction
norm.method	method for normalizing the transforma- tion matrix
aff.method	method for calculation of the affinity ma- trix
cluster.method	method for calculation of the subclass centers
predict-method for	· class "lfda" ィロトィアトイミンイミン ミークへで

Summary & Outlook

hierarchical mixture and common components classifiers

- singularities in EM: variable selection, dimensionality reduction
- automatic determination of the number of clusters
- mixtures of other distributions
- ML estimation of parameters: criteria better suited for classification
- documentation of the fitting process (trace)

LFDA

- metric for classification rule
- kernel LFDA

Summary & Outlook

hierarchical mixture and common components classifiers

- singularities in EM: variable selection, dimensionality reduction
- automatic determination of the number of clusters
- mixtures of other distributions
- ML estimation of parameters: criteria better suited for classification
- documentation of the fitting process (trace)

LFDA

- metric for classification rule
- kernel LFDA

References

I. Czogiel, K. Luebke, M. Zentgraf, and C. Weihs. Localized Linear Discriminant Analysis. In R. Decker and HJ. Lenz, editors, <i>Advances in Data Analysis</i> , volume 33, pages 133–140, Heidelberg, 2007. Springer.
T. Hastie and R. Tibshirani. Discriminant Analysis by Gaussian Mixtures. Journal of the Royal Statistical Society B, 58(1):155–176, 1996.
M. Sugiyama. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. Journal of Machine Learning Research, 8:1027–1061, 2007.
M. K. Titsias and A. C. Likas. Shared Kernel Models for Class Conditional Density Estimation. IEEE Transactions on Neural Networks, 12(5):987–997, September 2001.
M. K. Titsias and A. C. Likas. Mixture of Experts Classification Using a Hierarchical Mixture Model. Neural Computation, 14:2221–2244, 2002.
L. Zelnik-Manor and P. Perona. Self-Tuning Spectral Clustering. In L. K. Saul, Y. Weiss, and L. Bottou, editors, <i>Advances in Neural Information</i> <i>Processing Systems</i> , volume 17, pages 1601–1608. Cambridge, MA, 2005. MIT Press.
L Ochifferen and O. Misika

900