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Linear Mixed Models

y = Xβ +
L∑

l=1

Zlbl + ε

bl ∼ NKl
(0, λlσ

2
εΣl), bl⊥bs ∀l 6= s

ε ∼ Nn(0, σ2
ε In),

We want to test

H0,l : λl = 0 versus HA,l : λl > 0

⇔ H0,l : Var(bl) = 0 versus HA,l : Var(bl) > 0

Application examples:

I testing for equality of means between groups/subjects

I testing for linearity of a smooth function
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Additive Models as Linear Mixed Models

Simple additive model:

y = f (x) + ε

f (xi ) ≈
J∑

j=1

δjBj(xi )

I fit via PLS: min
δ

(
‖y − Bδ‖2 + 1

λδ
′Pδ
)

I reparametrize s.t. PLS-estimation is equivalent to
(RE)ML-estimation

given λ in a LMM with
I fixed effects for the unpenalized part of f (x)

I random effects (
i.i.d.∼ N (0, λσ2

ε)) for the deviations from the
unpenalized part

(Brumback, Ruppert, Wand, 1999; Fahrmeir, Kneib, Lang, 2004)

I In R: mgcv::gamm(), lmeSplines
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Problem:
Likelihood Ratio Tests for Zero Variance Components

General Case:

I y1, . . . , yn
i.i.d.∼ f (y |θ); θ = (θ1, . . . , θp)

I Test: H0 : θi = θ0
i versus HA : θi 6= θ0

i

I LRT = 2 log L(θ̂|y)− 2 log L(θ̂0|y)
n→∞∼ χ2

1

Problem for testing H0 : Var(bl) = 0
Underlying assumptions for asymptotics violated:

I data in LMM not independent

I θ0 not an interior point of the parameter space Θ
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Previous Results:

I Stram, Lee (1994); Self, Liang (1987): for i. i. d.
observations/subvectors, testing on the boundary of Θ:
LRT

as∼ 0.5δ0 : 0.5χ2
1

I Crainiceanu, Ruppert (2004):
I Stram/Lee mixture very conservative for non-i. i. d. data, small

samples
I LRT often with large point mass at zero, restricted LRT

(RLRT ) more useful
I derive exact finite sample distributions of LRT and RLRT in

LMMs with one variance component

I Greven et al. (2007):
pseudo-ML arguments to justify application of results in
Crainiceanu, Ruppert (2004) to models with multiple variance
components
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RLRsim: Algorithm

RLRTn ∼ sup
λ≥0

(
(n − p) log

(
1 +

Nn(λ)

Dn(λ)

)
−

K∑
k=1

log (1 + λµk,n)

)
,

Nn(λ) =
K∑

k=1

λµk,n

1 + λµk,n
w2

k ; Dn(λ) =
K∑

k=1

w2
k

1 + λµk,n
+

n−p∑
k=K+1

w2
k

wk ∼ N (0, 1); µ: eigenvalues of Σ1/2Z′(In − X(X′X)−1X)ZΣ1/2

Rapid simulation from this distribution:
I do eigenvalue decomposition to get µ
I repeat:

I draw (K + 1) χ2 variates
I one-dimensional maximization in λ (via grid search)

→ computational cost depends on K , not n
→ implemented in C ⇒ quasi-instantaneous
→ easy extension to models with L > 1
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Example: One Variance Component

Test for random intercept (nlme::lme):

> m0 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)

> system.time(print( exactRLRT(m0) ), gcFirst=T)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

RLRT = 47.0114, p-value < 2.2e-16

user system elapsed

0.42 0.00 0.42

> system.time(simulate.lme(m0,nsim=10000,method='REML'), gcFirst=T)

user system elapsed

55.00 0.03 55.48
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Example: Two Variance Components

Test for random slope with nuisance random intercept
(lme4::lmer):

> m0 <- lmer(distance ~ age + Sex + (1|Subject), data = Orthodont)

> mA <- update(m0, .~. + (0 + age|Subject))

> mSlope <- update(mA, .~. - (1|Subject))

> exactRLRT(mSlope, mA, m0)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

RLRT = 0.8672, p-value = 0.1603
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Example: Testing for Linearity of a Smooth Function

> library(mgcv); data(trees)

> m1 <- gamm(I(log(Volume)) ~ Height + s(Girth, m = 2),

+ data = trees)$lme
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Significant deviations from linearity?
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Example: Testing for Linearity of a Smooth Function

> library(mgcv); data(trees)

> m1 <- gamm(I(log(Volume)) ~ Height + s(Girth, m = 2),

+ data = trees)$lme

> exactRLRT(ml)

simulated finite sample distribution of RLRT.

(p-value based on 10000 simulated values)

RLRT = 5.4561, p-value = 0.0052
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Simulation Study: Settings

H0 tested VC nuisance VCs
equality of group means random intercept -

random slope
uni-/bivariate smooth

equality of group trends random slope random intercept

no effect / linearity univariate smooth -
random intercept

uni-/bivariate smooth

additivity bivariate smooth 2 univariate smooths

Goal: compare size & power of tests for zero variance components

I sample sizes n = 50, 100, 500

I mildly unbalanced group sizes for K = 5, 20

I details: Scheipl, Greven, Küchenhoff (2007)
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Simulation study
Compared Tests:

I RLR-type tests:
RLRsim, parametric bootstrap, 0.5δ0 : 0.5χ2

1

I F -type tests:
bootstrap F -type statistics, mgcv’s approximate F -test,
SAS-implementations of generalized F -test etc..

Main Results:

I RLRsim: equivalent performance to bootstrap RLRT, but
practically instantaneous

I χ2-mixture approximation for RLRT: always conservative,
lower than nominal size & reduced power

I bootstrap RLRT, bootstrap F -type statistics similar

I F -test from mgcv: similar power as χ2-mixture, occasionally
seriously anti-conservative
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Conclusion

I conventional RLRTs for Var(Random Effect) = 0 are broken,
but not beyond repair.

⇒ RLRsim
I is a rapid, more powerful alternative that performs as well as a

parametric bootstrap.
I has a convenient interface for models fit with nlme::lme or

lme4::lmer.
I Current limitations: no correlated random effects, no serial

correlation, only Gaussian responses.
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