Equilibrium Model Selection

Tom Radivoyevitch
Assistant Professor
Epidemiology and Biostatistics
Case Western Reserve University

Email: txr24@case.edu
Website: http://epbi-radivot.cwru.edu/

dNTP Supply System

Figure 1. dNTP supply. Many anticancer agents act on or through this system to kill cells. The most central enzyme of this system is RNR.

RNR Literature

ATP activates at hexamerization site??
dATP inhibits at activity site, ATP activates at activity site?

Selectivity site binding promotes R1 dimers. R2 is always a dimer.

ATP drives hexamer. Controversy: dATP drives inactive tetramer vs. inactive hexamer

Controversy: Hexamer binds one $R 2_{2}$ vs. three $R 2_{2}$

Total concentrations of R1, R2 2_{2}, dTTP, dGTP, dATP, ATP and NDPs
control the distribution of R1-R2 complexes and this changes in $S, G_{1}-G_{2}$ and G_{0}

Michaelis-Menten Model

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \rightleftarrows \mathrm{ES} \\
& V_{\max }\left(\frac{[S]}{[S]+K_{m}}\right)=k_{c a t} E_{0}\left(\frac{[S] / K_{m}}{[S] / K_{m}+1}\right)+0 E_{0}\left(\frac{1}{[S] / K_{m}+1}\right) \\
&=k_{c a t} E_{0}\left(\frac{[E S]}{[E S]+[E]}\right)+0 E_{0}\left(\frac{[E]}{[E S]+[E]}\right) \\
&=k_{c a t} E_{0} P(E S) \quad+0 E_{0} P(E)
\end{aligned}
$$

With RNR: no NDP and no R2 dimer $=>\mathrm{k}_{\text {cat }}$ of complex is zero. Otherwise, many different R1-R2-NDP complexes can have many different $k_{\text {cat }}$ values.

Enzyme, Substrate and Inhibitor

Competitive inhibition

Rt Spur Graph Models

$$
\begin{aligned}
& 0=p\left[R_{r}\right]-[R]-\frac{[R][t]}{K_{R t}}-2 \frac{[R]^{2}}{K_{R R}}-2 \frac{[R]^{2}[t]}{K_{R R t}}-2 \frac{[R]^{2}[t]^{2}}{K_{R R t}} \\
& 0=\left[t_{T}\right]-[t]-\frac{[R][t]}{K_{R t}} \\
& -\frac{[R]^{2}[t]}{K_{R R t}}-2 \frac{[R]^{2}[t]^{2}}{K_{R R t}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d[R]}{d \tau}= & p\left[R_{T}\right]-[R]-\frac{[R][t]}{K_{R t}}-2 \frac{[R]^{2}}{K_{R R}}-2 \frac{[R]^{2}[t]}{K_{R R t}}-2 \frac{[R][t]]^{2}}{K_{R R t}} \\
\frac{d[t]}{d \tau}= & {\left[t_{T}\right]-[t]-\frac{[R][t]}{K_{R t}} \quad-\frac{[R][t]}{K_{R R t}}-2 \frac{[R]]^{2}[t]^{2}}{K_{R R t t}} } \\
& {[R](0)=0 ; \quad[t](0)=0 . }
\end{aligned}
$$

Rt Grid Graph Models

Figure 2. Grid graph models.

Figure 3. Spur graph models. The following models are equivalent: $3 \mathrm{~A}=2 \mathrm{~F}, 3 \mathrm{~B}=2 \mathrm{H}, 3 \mathrm{C}=2 \mathrm{~J}, 3 \mathrm{D}=2 \mathrm{~L}, 3 \mathrm{E}=2 \mathrm{~N}$

Application to Data

Data and fit from Scott, C. P., Kashlan, O.
B., Lear, J. D., and Cooperman, B. S.
(2001) Biochemistry 40(6), 1651-166

Infinitely tight binding situation wherein free molecule annihilation (the initial linear ramp) continues in a one-to-one fashion with increasing $[\mathrm{dTTP}]_{T}$ until $[d T T P]_{T}$ equals $[R 1]_{T}$ $=7.6 \mu \mathrm{M}$, the plateau point where R exists solely as RRtt .

Experiment becomes a titration scan of $\left[\mathrm{t}_{\mathrm{T}}\right]$ to estimate $\left[\mathrm{R}_{\mathrm{T}}\right]$, but $\left[R_{T}\right]=7.6 \mu \mathrm{M}$ was already known.

$$
M_{a}=90 \frac{[R]+\left[R_{T}\right](1-p)}{\left[R_{T}\right]}+180 \frac{2[R R]+2[R R t]+2[R R t t]}{\left[R_{T}\right]}
$$

Total [dTTP] (uM)

Table 3 - Rofougaran's R1 dimerization data

Model Space Fit with New Data

R_{T}	t_{T}	Dimer	Monomer	Average Mass
2.700	100	18100	910	175.692
0.135	100	693	98	168.850
2.700	0	935	19766	94.065

Table 4 - Joint Data Analysis

Model	Parameter	Initial Value	Optimal Value	Confidence Interval
3 M	RRtt	1.000	18.697	$(4.807,72.966)$
	Rt	Inf	Inf	absent
	RR	Inf	Inf	absent
	RRt	Inf	Inf	absent
	pRT	1.000	1.000	fixed
	SSE	0.064	0.034	
	AIC	-48.066	-54.448	
	cpu	0.000	0.445	fit succeeded
3 Mp	RRtt	1.000	5.558	$(0.370,83.931)$
	pRT	1.000	0.907	$(0.787,1.044)$
	Rt	Inf	Inf	absent
	RR	Inf	Inf	absent
	RRt	Inf	Inf	absent
	SSE	0.064	0.027	
	AIC	-44.852	-53.308	
	cpu	0.000	0.199	fit succeeded
$3 R p$	pRT	1.000	0.822	$(0.736,0.918)$
	Rt	Inf	Inf	absent
	RR	Inf	Inf	absent
	RRt	Inf	Inf	absent
	RRtt	0.000	0.000	fixed
	SSE	0.106	0.041	
	AIC	-42.954	-52.590	
	cpu	0.000	0.104	fit succeeded

[dTTP]

Final Remarks

- Fast Total Concentration Constraint (TCC; i.e. g=0) solvers are critical to model estimation/selection. TCC ODEs (\#ODEs = \#reactants) solve TCCs faster than $\mathrm{k}_{\text {on }}=1$ and $\mathrm{k}_{\text {off }}=\mathrm{K}_{\mathrm{d}}$ systems (\#ODEs = \#species = high \# in combinatorially complex situations)
- Semi-exhaustive approach = fit all models with same number of parameters as parallel batch, then fit next batch only if current shows AIC improvement over previous batch. This reduces Rt model space fitting times by a factor of 5 .
- The best of a best-guess lot of ~ 10 models may be adequate in many cases

Acknowledgements

- Case Comprehensive Cancer Center
- NIH (K25 CA104791)
- Anders Hofer (Umea)
- Thank you

