

sfb 475: reduction of complexity in multivariate data structures

rPorta An R Package for Analyzing Polytopes and Polyhedra

Robin Nunkesser^{1,3} Silke Straatmann^{2,3} Simone Wenzel²

¹Department of Computer Science, TU Dortmund

²Department of Statistics, TU Dortmund

³Collaborative Research Center 475

Outline

The Package

Application Example

Summary 00

Introduction

- Motivation
- Double Description Method

2 The Package

- Description
- Methods

3 Application Example

Introduction •••••

Motivation

The Package

Application Example

Summary 00

Problem from design of experiments

Generate a space-filling design exploring the unknown feasible parameter space with a minimum of failures/missing values

Strategy (in the spirit of Henkenjohann et al., 2005)

- Assume feasible area is connected and convex
- Viewed from feasible point space behind failure points is failure region
- Examine and restrict parameter space sequentially

Introduction 0000
Motivation

The Package

Application Example

Summary 00

Key aspects required for the strategy in \mathbb{R}^d

- Inefficient to construct a convex cone for each combination of one failure and d feasible points
- Find a fast way to check if a candidate-point is lying inside one of these cones and hence is a failure point

Solution

- Use Polyhedral Convex Cones (PCCs) with *extreme rays* to minimize number of convex cones
- Calculate PCCs with Double Description Method as introduced in Fukuda and Prodon (1996)

Double Description Method

Polyhedral Cone

A subset $P \in \mathbb{R}^d$ is called a *polyhedral cone* if

$$\exists A \in \mathbb{R}^{n \times d} : P = \{x \in \mathbb{R}^d : Ax \ge 0\} =: P(A)$$

Representation and Generation

Let $P \in \mathbb{R}^d$ be a polyhedral cone and $A \in \mathbb{R}^{n \times d}$ be the matrix with P = P(A). Then there exists a matrix $R \in \mathbb{R}^{d \times m}$ such that (A, R) is a DD pair and it is:

$$P = \{x \in \mathbb{R}^d : Ax \ge 0\}$$

= $\{x \in \mathbb{R}^d : x = R\lambda \text{ for some } \lambda \ge 0\}$

A is called *representation matrix* of the polyhedral cone P, R is called *generating matrix* for the polyhedral cone.

The Package

Application Example

Summary

R Package rPorta

R Interface to PORTA (Polyhedron Representation Transformation Algorithm) by T. Christof (Universität Heidelberg) and A. Löbel (ZIB)

What is PORTA?

- Collection of routines for analyzing polytopes and polyhedra
- Supports both representations of the double description pair
- Transforms between the representations

Why PORTA? (and not polymake, cdd, PPL,...)

- Platform independence (gcc)
- Free availability (GPL license)
- Speed
- Fitting functionality for the intended application

The Package

Application Example

Summary

Comparison to rcdd

rcdd is an R Package interfacing cdd(lib) (C implementation of the double description method) by K. Fukuda (Swiss Federal Institute of Technology)

What is cdd?

- · Supports both representations of the double description pair
- Transforms between the representations
- Additionaly solves linear programming problems

Short comparison

Point of	rPorta	rcdd		
comparison				
Platforms	Every platform with R	Every platform with gmp		
Arithmetic	64 bit rational arithmetic	Exact rational arithmetic		
Functions	Collection for transforming and analyzing polyhedra	Focuses on transformation and linear programming		

The Package

Application Example

Summary

PORTA's UI and its R Counterpart

PORTA reads all data from and to files \leftrightarrow rPorta wraps files into S4 classes

Example of an ieq file $(\hat{=} representation matrix A)$	S4 object ieqExample $(\hat{=} representation matrix A)$
DIM = 3	> ieqExample@inequalities@num
	[,1] [,2] [,3] [,4]
INEQUALITIES_SECTION	[1,] 1 0 0 1
(1) x1 >= 1	[2,] 0 1 0 2
(2) x2 >= 2	[3,] 0 0 1 3
(3) x3 >= 3	
	>ieqExample@inequalities@sign
END	[1] 1 1 1

Application Example

Summary 00

PORTA's UI and its R Counterpart

PORTA reads all data from and to files \leftrightarrow rPorta wraps files into S4 classes

Example of a poi file $(\hat{=} \text{ generating matrix } R)$	S4 object poiExample $(\hat{=} \text{ generating matrix } R)$
DIM = 3	> poiExample=traf(ieqExample)
CONV_SECTION	<pre>> poiExample@convex_hull@num</pre>
1 2 3	[,1] [,2] [,3]
	[1,] 1 2 3
CONE_SECTION	
0 0 1	<pre>> poiExample@convex_cone@num</pre>
0 1 0	[,1] [,2] [,3]
1 0 0	[1,] 0 0 1
	[2,] 0 1 0
END	[3,] 1 0 0

The Package

Application Example

Summary 00

Method traf

Method to transform between the double description pair representations

S4 method

traf(object, opt_elim=FALSE, chernikov_rule_off=FALSE, validity_table_out=FALSE, long_arithmetic=FALSE)

object Object of class ieqFile or poiFile

opt_elim Use a heuristic to eliminate that variable next, for which the number of new inequalities is minimal

validity_table_out Include a table which indicates strong validity

long_arithmetic Use long integers for intermediate results

Example for traf

> poiExample=traf(ieqExample)

The Package ○○○○○●○ Application Example

Summary

Method fctp

Checks the facet inducing property

S4 method

fctp(object, poiObject)

object, poiObject ieqFile object and poiFile object to check

Example ieqFile	Result for $(0,1,0)$, $(0,0,2)$, and $(0,0,3)$
DIM = 3	[[1]] # not valid for (1)
VALID	0 1 0
2 0 0	<pre>[[2]] # satisfying (1) with equality</pre>
INEQUALITIES_SECTION	0 0 2
(1) $x1 + x2 + x3 \ge 2$	[[3]] # not valid for (2)
(2) $x1 + x2 + x3 \le 2$	0 0 3
(3) x1 >= 0	<pre>[[4]] # satisfying (2) with equality</pre>
(4) x2 >= 0	0 0 2
(5) x3 >= 0	

Nunkesser, Straatmann, Wenzel

The Package

Application Example

Summary

Some Other Functions

Helper functions

as.poi, as.ieq turns objects into poi or ieq objects

read.portaFile converts PORTA files to corresponding S4 classes

PORTA functions

vint enumerates integral points of a linear system
portsort sorts and formats poiFile and ieqFile objects
fmel projects a linear system to a subspace
iespo enumerates valid inequalities for a given polyhedron
posie enumerates valid points for given inequalities

Application specific functions

failureRegions function specific for the application example

Application of rPorta

failureRegions determines unfeasible regions inside a parameter space (here: 3 steps with 10 points each to restrict parameter space $[-2,2]^2$)

S4 method

failureRegions(experiments, parameterspace, fail)

parameterspace Represents parameter space grid (here: 1681 points)
 experiments Contains the points with known results (here: initial 10
 point uniform coverage design)

fail A logical vector indicating which experiments failed

res <- failureRegions(as.poi(exper),as.poi(paramspace),fails)
restrictedSpace <- as.matrix(getFeasiblePoints(res))</pre>

- update with 10 new points from restrictedSpace regarding space-filling criterias
- restrict restrictedSpace again (repeat until 3 restrictions)

Result

The Package

Application Example

Summary 00

rPorta	
Each step < 1 second	

Old Method

Step 1:	16.6 seconds
Step 2:	194.17 seconds
Step 3:	744.01 seconds

Summary

- Double Description Method speeds up handling of convex cones
- rPorta provides an interface to a double description implementation
- Easy analysis of polytopes and polyhedra in R

- Fukuda, K., Prodon, A., 1996. Double description method revisited. In: Combinatorics and Computer Science. Vol. 1120 of LNCS. Springer-Verlag, London, pp. 91–111.
- Geyer, C. J., Meeden, G. D., 2008. rcdd: rcdd (C Double Description for R). R package version 1.1.
- Henkenjohann, N., Göbel, R., Kleiner, M., Kunert, J., 2005. An adaptive sequential procedure for efficient optimization of the sheet metal spinning process. Quality and Reliability Engineering International 21 (5), 439–455.
- Nunkesser, R., Straatmann, S., Wenzel, S., 2008. rPorta: R/PORTA interface. R package version 0.1-6.