rPorta

An R Package for Analyzing Polytopes and Polyhedra

Robin Nunkesser ${ }^{1,3} \quad$ Silke Straatmann ${ }^{2,3} \quad$ Simone Wenzel ${ }^{2}$
${ }^{1}$ Department of Computer Science, TU Dortmund
${ }^{2}$ Department of Statistics, TU Dortmund
${ }^{3}$ Collaborative Research Center 475

use
(1) Introduction

- Motivation
- Double Description Method
(2) The Package
- Description
- Methods
(3) Application Example

Motivation

Problem from design of experiments

Generate a space-filling design exploring the unknown feasible parameter space with a minimum of failures/missing values

Strategy (in the spirit of Henkenjohann et al., 2005)

- Assume feasible area is connected and convex
- Viewed from feasible point space behind failure points is failure region
- Examine and restrict parameter space sequentially

Motivation

Key aspects required for the strategy in \mathbb{R}^{d}

- Inefficient to construct a convex cone for each combination of one failure and d feasible points
- Find a fast way to check if a candidate-point is lying inside one of these cones and hence is a failure point

Solution

- Use Polyhedral Convex Cones (PCCs) with extreme rays to minimize number of convex cones
- Calculate PCCs with Double Description Method as introduced in Fukuda and Prodon (1996)

Double Description Method

Double Description Pair

A pair (A, R) of real matrices A and R is called a double description pair (DD pair) if the following relationship holds:

$$
A x \geq 0 \text { if and only if } x=R \lambda \text { for some } \lambda \geq 0 .
$$

$x_{1} \geq 1, x_{2} \geq 2$, and $x_{3} \geq 3$ $(1,2,3),(1,0,0),(0,1,0),(0,0,1)$

Double Description Method

Polyhedral Cone

A subset $P \in \mathbb{R}^{d}$ is called a polyhedral cone if

$$
\exists A \in \mathbb{R}^{n \times d}: P=\left\{x \in \mathbb{R}^{d}: A x \geq 0\right\}=: P(A)
$$

Representation and Generation

Let $P \in \mathbb{R}^{d}$ be a polyhedral cone and $A \in \mathbb{R}^{n \times d}$ be the matrix with $P=P(A)$. Then there exists a matrix $R \in \mathbb{R}^{d \times m}$ such that (A, R) is a DD pair and it is:

$$
\begin{aligned}
P & =\left\{x \in \mathbb{R}^{d}: A x \geq 0\right\} \\
& =\left\{x \in \mathbb{R}^{d}: x=R \lambda \text { for some } \lambda \geq 0\right\}
\end{aligned}
$$

A is called representation matrix of the polyhedral cone P, R is called generating matrix for the polyhedral cone.

R Package rPorta

R Interface to PORTA (Polyhedron Representation Transformation Algorithm) by T. Christof (Universität Heidelberg) and A. Löbel (ZIB)

What is PORTA?

- Collection of routines for analyzing polytopes and polyhedra
- Supports both representations of the double description pair
- Transforms between the representations

Why PORTA? (and not polymake, cdd, PPL,...)

- Platform independence (gcc)
- Free availability (GPL license)
- Speed
- Fitting functionality for the intended application description method) by K. Fukuda (Swiss Federal Institute of Technology)

What is cdd?

- Supports both representations of the double description pair
- Transforms between the representations
- Additionaly solves linear programming problems

Short comparison

Point of comparison	rPorta	rcdd
Platforms	Every platform with R	Every platform with gmp
Arithmetic	64 bit rational arithmetic Follection for transforming and analyzing polyhedra	Exact rational arithmetic Focuses on transformation and linear programming

PORTA's UI and its R Counterpart

PORTA reads all data from and to files \leftrightarrow rPorta wraps files into S 4 classes

Example of an ieq file ($\hat{=}$ representation matrix A)	S4 object ieqExample ($\hat{=}$ representation matrix A)
DIM $=3$	> ieqExample@inequalities@num $[, 1][, 2][, 3][, 4]$
INEQUALITIES_SECTION	[1,] 100
(1) $\mathrm{x} 1 \quad>=1$	$[2] \quad 0 \quad ,1 \begin{array}{llll}{[1,}\end{array}$
(2) $\mathrm{x} 2 \quad>=2$	$[3] \quad 0 \quad 0 \quad ,1 \begin{array}{llll} \\ {[3}\end{array}$
(3) $\quad x 3>=3$	
	>ieqExample@inequalities@sign
END	[1] 111

PORTA's UI and its R Counterpart

PORTA reads all data from and to files \leftrightarrow rPorta wraps files into S4 classes

Example of a poi file ($\hat{=}$ generating matrix R)
DIM $=3$
CONV_SECTION
123
CONE_SECTION
001
010
100
END

Method traf

Method to transform between the double description pair representations

S4 method

traf (object, opt_elim=FALSE, chernikov_rule_off=FALSE, validity_table_out=FALSE, long_arithmetic=FALSE)
object Object of class ieqFile or poiFile
opt_elim Use a heuristic to eliminate that variable next, for which the number of new inequalities is minimal
chernikov_rule_off Fourier-Motzkin elimination without or with rule of Chernikov
validity_table_out Include a table which indicates strong validity long_arithmetic Use long integers for intermediate results

Example for traf

> poiExample=traf(ieqExample)

Method fctp

Checks the facet inducing property

S4 method

fctp(object, poiObject)
object, poiObject ieqFile object and poiFile object to check

Example ieqFile
DIM $=3$
VALID
200
INEQUALITIES_SECTION
(1) $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3>=2$
(2) $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3<=2$
(3) $\mathrm{x} 1 \quad>=0$
$\begin{aligned} \text { (4) } & \quad x 2 \quad>=0 \\ \text { (5) } & x 3>=\end{aligned}$

Result for $(0,1,0),(0,0,2)$, and $(0,0,3)$

[[1]] \# not valid for

010
[[2]] \# satisfying (1) with equality
002
[[3]] \# not valid for (2)
003
[[4]] \# satisfying (2) with equality
002
. . .
-••

Some Other Functions

Helper functions

as.poi, as.ieq turns objects into poi or ieq objects
read.portaFile converts PORTA files to corresponding S4 classes

PORTA functions

vint enumerates integral points of a linear system portsort sorts and formats poiFile and ieqFile objects fmel projects a linear system to a subspace iespo enumerates valid inequalities for a given polyhedron posie enumerates valid points for given inequalities

Application specific functions

failureRegions function specific for the application example

Application of rPorta

failureRegions determines unfeasible regions inside a parameter space (here: 3 steps with 10 points each to restrict parameter space $[-2,2]^{2}$)

S4 method

failureRegions(experiments, parameterspace, fail)
parameterspace Represents parameter space grid (here: 1681 points) experiments Contains the points with known results (here: initial 10 point uniform coverage design)
fail A logical vector indicating which experiments failed
res <- failureRegions(as.poi(exper), as.poi(paramspace), fails) restrictedSpace <- as.matrix(getFeasiblePoints(res))

- update with 10 new points from restrictedSpace regarding space-filling criterias
- restrict restrictedSpace again (repeat until 3 restrictions)

Result

after second restriction

after third restriction

rPorta

Each step <1 second

Old Method
Step 1: 16.6 seconds
Step 2: 194.17 seconds
Step 3: 744.01 seconds

Summary

- Double Description Method speeds up handling of convex cones
- rPorta provides an interface to a double description implementation
- Easy analysis of polytopes and polyhedra in R

Bibliography

围 Fukuda，K．，Prodon，A．，1996．Double description method revisited．In： Combinatorics and Computer Science．Vol． 1120 of LNCS． Springer－Verlag，London，pp．91－111．
围 Geyer，C．J．，Meeden，G．D．，2008．rcdd：rcdd（C Double Description for R ）．R package version 1．1．
Renkenjohann，N．，Göbel，R．，Kleiner，M．，Kunert，J．，2005．An adaptive sequential procedure for efficient optimization of the sheet metal spinning process．Quality and Reliability Engineering International 21 （5），439－455．
目 Nunkesser，R．，Straatmann，S．，Wenzel，S．，2008．rPorta：R／PORTA interface． R package version 0．1－6．

