

The Strucplot Framework for Visualizing Categorical Data

David Meyer¹, Achim Zeileis² and Kurt Hornik²

¹Department of Information Systems and Operations ²Department of Statistics and Mathematics Wirtschaftsuniversität Wien

Dortmund, useR! 2008

Introduction

- This talk is about statistical graphics: Visualizing Categorical Data using the vcd package. (Motivation: VCD book for SAS by Michael Friendly.)
- vcd includes tools for fitting discrete distributions, manipulating two- and higher-dimensional "flat" tables, computing test statistics, and creating plots supporting both exploratory analysis and inference. There are also a lot of data sets.
- The talk focuses on the "strucplot" framework in vcd, supporting the creation of (variants of) mosaic, association, and sieve plots in a flexible way.
- It will start with exploratory techniques for two-way tables, discuss highlighting and shading techniques, link this with inference methods, and conclude on some methods for higher-dimensional data.

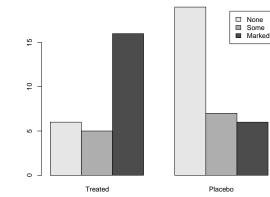
The Arthritis data (Koch and Edwards, 1988)

Results from a double-blind clinical trial among 84 patients investigating a new treatment for rheumatoid arthritis, stratified by age and gender. (In this talk, we ignore age.)

		Improvement		
Gender	Treatment	None	Some	Marked
Female	Placebo	19	7	6
	Treatment	6	5	16
Male	Placebo	10	0	1
	Treatment	7	2	5

We start with the results for female patients (two-way data).

Introduction Basic te

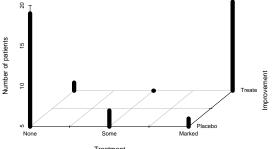

Basic techniques High

Highlighting and shading

Visualizing test statistic

Multiway tables Con

Visualize this with ... a barplot (?)


æ

ヘロト 人間ト 人造ト 人造トー

Highlighting and shading

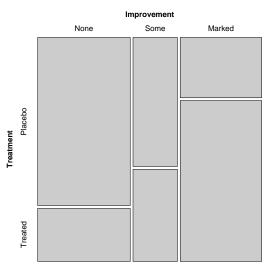
ヘロト ヘ回ト ヘヨト ヘヨト

... a 3D-barplot (?!?)

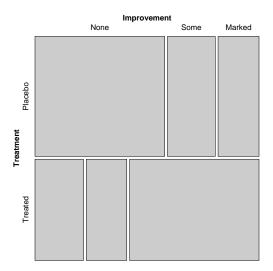
Treatment

æ

Basic techniques Highlighting and shading Visualizing test statistics Multiway tables Conclusion

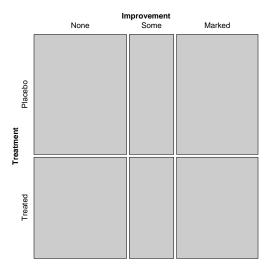

Mosaic of observed frequencies (1)

None	None Some	


Basic techniques

Mosaic of observed frequencies (2)

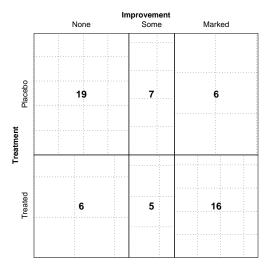
Mosaic of observed frequencies—alternative splitting


æ

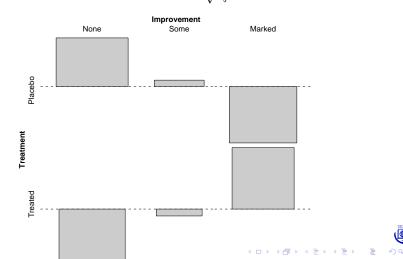
ヘロト 人間ト 人間ト 人間ト

Introduction

Multiway tables Conclusior


Mosaic of expected frequencies

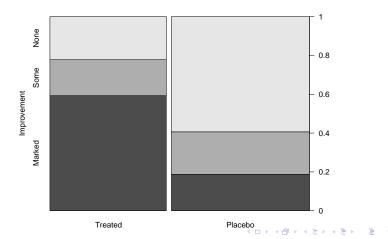
ultiway tables Conclusion


Parquet-(Sieve-)diagram

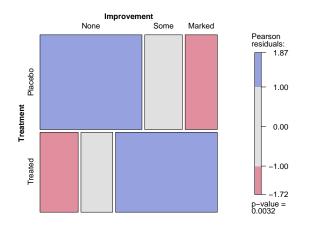

Association plot

Pearson residuals r_{ij} : standardized deviations of observed (n_{ij}) from expected (\hat{n}_{ij}) frequencies $(r_{ij} = \frac{n_{ij} - \hat{n}_{ij}}{\sqrt{\hat{n}_{ij}}})$.

Highlighting


Mark improvements levels:

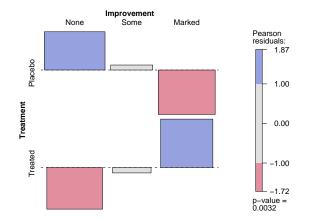
Spine plot


Turning it clockwise yields a *spine plot*. (Similar to barplot, but frequencies are shown by bar *widths*.)

Multiway tables Conclus

Friendly's residual-based shading

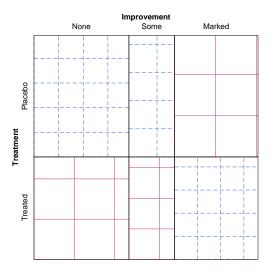
Idea: extend mosaic plot by adding information on Pearson residuals through color-coding.



э

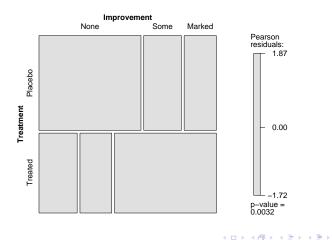
A D > A P > A D > A D >

Multiway tables Conclusion


Association plot with shading

<ロト <回ト < 注ト < 注ト

Sieveplot with shading

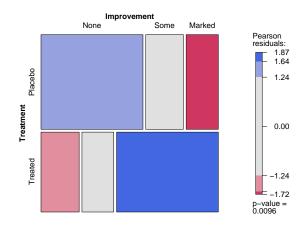

Choice of the cutoff points

- Friendly wanted to show "patterns of deviation" only.
- Any ad-hoc choice can lead to wrong conclusions:
- Colored cells not necessarily indicate a significant χ^2 test.
- The χ^2 test can be significant without any colored cell.
- Reason: the cutoff points for given significance levels depend on the data.

Again: Mosaic for the Arthritis data

Visualization of the χ^2 statistic with Friendly's default cutoff points (2, 4):

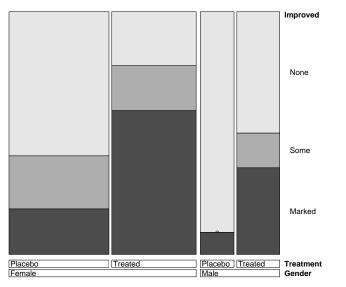
э


The maximum statistic

- Wanted: one-to-one-correspondency between visualization and test, i.e., significance *iff* at least one cell is colored.
- The χ^2 statistic does not do this: $X^2 = \sum_{i,j} r_{ij}^2$
- But we can use other functionals to aggregate the residuals than the sum of squares, e.g. the maximum: M = max_{i,j} |r_{ij}|
- This is the only test statistic with the desired properties.
- The distribution under the null can be obtained through simulation (permutation test).

Mosaic diagram for the Arthritis data

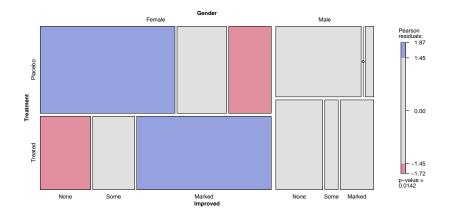
Visualization of the maximum statistic with data-driven cutoff points (for levels 10% and 1%):



э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

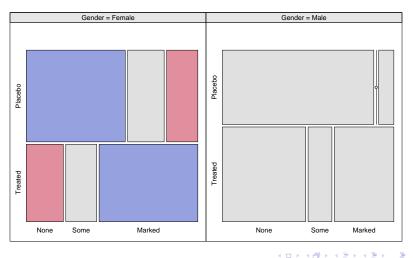
A doubledecker diagram



æ

Multiway tables Conclusion

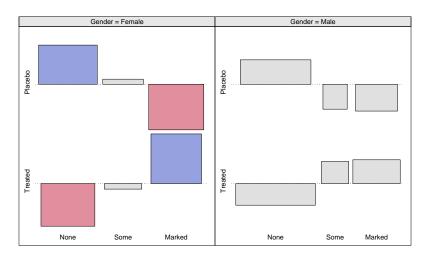
A mosaic plot for conditional independence



æ

ヘロト 人間 ト 人 ヨト 人 ヨト

A conditional mosaic diagram


If the conditioning variables have unbalanced frequencies, the resulting strata can become distorted. Solution: trellis layout:

Multiway tables Conclusio

A conditional association diagram

æ

<ロト <回ト < 注ト < 注ト

- Conclusion
 - The strucplot framework includes visualization techniques like mosaic, sieve and association diagrams (and variants thereof). The can be used for both explorative and modeling tasks.
 - Many features would not exist without the grid graphics engine (Thanks, Paul [Murrell]!)
 - The framework integrates several different plots. which share some customizable graphical aspects: split directions, spacing, labeling, shading, legend, and content of the tiles.
 - The resulting set of graphical parameters is enormeous. Therefore, in developing the package, modularization was key!
 - The useRs' benefit is a flexible framework that can further be adapated and extended.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

- Zeileis A, Meyer D, Hornik K (2007). Residual-based Shadings for Visualizing (Conditional) Independence. *Journal of Computational and Graphical Statistics*, 16(3), pp. 507–525.
- Meyer D, Zeileis A, Hornik K (2006). The Strucplot Framework: Visualizing Multi-way Contingency Tables with vcd. *Journal of Statistical Software*, 17(3), pp. 1–48.
- Meyer D, Zeileis A, and Hornik K (2008). *vcd: Visualizing Categorical Data*. R package version 1.0-9.

• e-mail: Firstname.Lastname@R-Project.org