The statistical evaluation of DNA crime stains in R

Miriam Marušiaková

Department of Statistics, Charles University, Prague Institute of Computer Science, CBI, Academy of Sciences of CR

UseR! 2008, Dortmund

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Introduction

Single Crime Scene

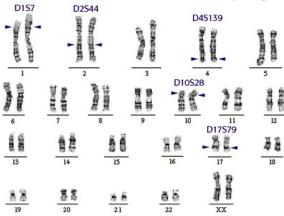
Independence Population substructure Relatedness

R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Chromosomal locations of RFLP markers used in DNA profiling



Human Female Karyotype

Single crime scene stain

- Blood stain at the crime scene
- Believed it was left by offender
- Suspect arrested for reasons unconnected with his DNA profile
- Crime sample, suspect sample

Hypothesis

- $ightharpoonup H_p$ (prosecution): The suspect left the crime stain.
- $ightharpoonup H_d$ (defense): Some other person left the crime stain.

Notation

- ▶ DNA typing results $E = \{G_C, G_S\}$
- ▶ non-DNA evidence I

Evidence interpretation

Prior odds

$$\frac{Pr(H_p|I)}{Pr(H_d|I)}$$

Posterior odds

$$\frac{Pr(H_p|E,I)}{Pr(H_d|E,I)}$$

Bayes' theorem

$$\frac{Pr(H_p|E,I)}{Pr(H_d|E,I)} = \underbrace{\frac{Pr(E|H_p,I)}{Pr(E|H_d,I)}}_{IR} \times \frac{Pr(H_p|I)}{Pr(H_d|I)}$$

▶ Balding and Donelly (1995), Robertson and Vignaux (1995)

Evidence interpretation

$$\begin{split} LR &= \frac{Pr(E|H_p,I)}{Pr(E|H_d,I)} = \frac{Pr(G_S,G_C|H_p,I)}{Pr(G_S,G_C|H_d,I)} \\ &= \frac{Pr(G_C|G_S,H_p,I)}{Pr(G_C|G_S,H_d,I)} \times \frac{Pr(G_S|H_p,I)}{Pr(G_S|H_d,I)} \\ &= \frac{Pr(G_C|G_S,H_p,I)}{Pr(G_C|G_S,H_d,I)} \times 1 \\ &= \frac{1}{Pr(G_C|G_S,H_d,I)} \\ &= \frac{1}{Pr(G_C|H_d,I)} \quad \text{if independence assumed} \end{split}$$

Errors and fallacies

Statement

The probability of observing this type if the blood came from someone other than suspect is 1 in 100.

$$Pr(G_C|H_d,I) = 1/100$$

Common error

The probability that the blood came from someone else is 1 in 100.

$$Pr(H_d|G_C,I) = 1/100$$

There is a 99% probability that it came from the suspect.

Errors and fallacies (cont.'d)

Statement

The evidence is 100 times more probable if the suspect left the crime stain than if some unknown person left it.

$$\frac{1}{Pr(G_C|H_d,I)} = 100$$

Common error

It is 100 times more probable that the suspect left the crime stain than some unknown person.

$$\frac{Pr(H_p|G_C,I)}{Pr(H_d|G_C,I)} = 100$$

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Introduction

Single Crime Scene

Independence

Population substructure Relatedness R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Product rule

Model of an ideal population

- Infinite size
- Random mating
- ▶ Model reliable for most real-world problems

Hardy-Weinberg equilibrium

$$Pr(G = A_i A_i) = p_i^2$$

 $Pr(G = A_i A_j) = 2p_i p_j, \quad i \neq j$

Likelihood ratio

$$LR = \frac{1}{Pr(G_C|G_S, H_d, I)} = \frac{1}{Pr(G_C|H_d, I)} = \frac{1}{p_i^2} \left(\frac{1}{2p_i p_j}\right)$$

Introduction

Single Crime Scene

Independence

Population substructure

Relatedness
R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Population substructure

- F measure of uncertainty about allele proportions in the population of suspects
- Genetic interpretation of F (Wright, 1951)
- ▶ How to estimate *F* (Weir and Cockerham, 1984)
- Recommendations (National Research Council, 1996) F=0.01 large subpopulations (USA) F=0.03 small isolated subpopulations
- Match probabilities (Balding and Nichols, 1994)

$$P(G_C = A_i A_i | G_S = A_i A_i) = \frac{[2F + (1 - F)p_i][3F + (1 - F)p_i]}{(1 + F)(1 + 2F)}$$

$$P(G_C = A_i A_j | G_S = A_i A_j) = \frac{2 [F + (1 - F)p_i] [F + (1 - F)p_j]}{(1 + F)(1 + 2F)}$$

Effects of F corrections

Likelihood ratio - some numerical values

► Heterozygotes A_iA_j , $p_i = p_j = p$

	F = 0	F = 0.001	F = 0.01	F = 0.03
p = 0.01	5 000	4 152	1 295	346
p = 0.05	200	193	145	89
p = 0.10	50	49	43	34

► Homozygotes A_iA_i , $p_i = p$

	F = 0	F = 0.001	F = 0.01	F = 0.03
p = 0.01	10 000	6 439	863	157
p = 0.05	400	364	186	73
p = 0.10	100	96	67	37

Introduction

Single Crime Scene

Independence
Population substructure

Relatedness

R package forensic

Mixed stain

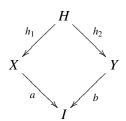
Independence
Population substructure
People versus Simpson
More general situation

Inbreeding

- Individuals with common ancestors related
- Their children inbred
- Alleles are ibd (identical by descent) copies of the same allele

Example

Alleles h_1 , h_2 transmitted from parent H to X, Y who transmit a, b to I



$$Pr(h_1 \text{ is ibd to } h_2) = Pr(h_1 \equiv h_2) = 0.5$$

 $Pr(a \equiv b) = Pr(a \equiv h_1, b \equiv h_2 | h_1 \equiv h_2) Pr(h_1 \equiv h_2) = 0.5^3 = 0.125$

Match probabilities for close relatives

Balding and Nichols (1994)

$$Pr(G_C|G_S, H_d, I) = \begin{cases} \left(k_0 p_i^4 + k_1 p_i^3 + k_2 p_i^2\right) / p_i^2 \\ \left(4k_0 p_i^2 p_j^2 + k_1 p_i p_j (p_i + p_j) + 2k_2 p_i p_j\right) / 2p_i p_j \end{cases}$$

Kinship coefficients

Relationship	k_0	k_1	k_2
Parent - child	0	1	0
Siblings	1/4	1/2	1/4
Grandparent - grandchild	1/2	1/2	0
Uncle - nephew	1/2	1/2	0
Cousins	3/4	1/4	0
Unrelated	1	0	0

 k_i - probability that two persons will share i alleles ibd i = 0, 1, 2

Single Crime Scene

Population substructure

R package forensic

More general situation

R function Pmatch

Usage

```
Pmatch(prob, k = c(1, 0, 0), theta = 0)
```

Example

```
> p < -c(0.057, 0.160, 0.182, 0, 0.024, 0.122)
> Pmatch(p)
$prob
          locus 1 locus 2 locus 3
 allele 1 0.057 0.182 0.024
 allele 2 0.160 0.000 0.122
$match
          locus 1 locus 2 locus 3
     [1,] 0.01824 0.033124 0.005856
$total match
```

[1] 3.538088e-06

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence Population substructure People versus Simpson More general situation

Mixtures

- Prosecution and defense hypothesis
 H_p: Contributors were the victim and the suspect.
 H_d: Contributors were the victim and an unknown person.
- Likelihood ratio for the mixture

$$\begin{array}{ll} \textit{LR} & = & \frac{Pr(E_C,G_V,G_S|H_p,I)}{Pr(E_C,G_V,G_S|H_d,I)} \\ & = & \frac{Pr(E_C|G_V,G_S,H_p,I)}{Pr(E_C|G_V,G_S,H_d,I)} \times \frac{Pr(G_V,G_S|H_p,I)}{Pr(G_V,G_S|H_d,I)} \\ & = & \frac{Pr(E_C|G_V,G_S,H_p,I)}{Pr(E_C|G_V,G_S,H_d,I)} = \frac{1}{Pr(E_C|G_V,G_S,H_d,I)} \\ & = & \frac{1}{Pr(E_C|G_V,H_d,I)} \quad \text{(if independence assumed)} \end{array}$$

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence

Population substructure People versus Simpson More general situation

Match probability (independence assumption)

Weir et al (1997)

$$P_x(U,C) = (T_0)^{2x} - \sum_{i \in U} (T_{1i})^{2x} + \sum_{i,j \in U: i < j} (T_{2ij})^{2x} - \dots$$

$$\begin{array}{lll} T_0 & = & \sum_{l \in C} & p_l \\ T_{1i} & = & \sum_{l \in C \setminus \{i\}} & p_l, & i \in U \\ T_{2ij} & = & \sum_{l \in C \setminus \{i,j\}} & p_l, & i,j \in U, \quad i < j \end{array}$$

U - set of alleles from the crime sample C not carried by known contributors

x - number of unknown contributors

R

- ▶ Pevid.ind(alleles, prob, x, u = NULL)
- ▶ LR.ind(alleles, prob, x1, x2, u1 = NULL, u2 = NULL

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence

Population substructure

People versus Simpsor More general situation

Match probability for structured population

Assumption

All the involved people come from the same subpopulation with parameter F

Fung and Hu (2000), Zoubková and Zvárová (2004)

$$MP = \sum_{r_1=0}^{r} \sum_{r_2=0}^{r-r_1} \cdots \sum_{r_{c-1}=0}^{r-r_1-\cdots-r_{c-2}} \frac{(2n_U)! \prod_{i=1}^{c} \prod_{j=t_i+v_i}^{t_i+u_i+v_i-1} [(1-F)p_i+jF]}{\prod_{i=1}^{c} u_i! \prod_{j=2n_T+2n_U+2n_V-1}^{2n_T+2n_U+2n_V-1} [(1-F)+jF]}$$

▶ Pevid.gen(alleles, prob, x, T = NULL, V = NULL, theta = 0

T, V - genotypes of known contributors, known non-contributors

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness

R package forensic

Mixed stain

Independence Population substructure

People versus Simpson

More general situation

People versus Simpson (Los Angeles County Case)

DNA evidence

- ▶ Material at the crime scene alleles a, b, c (locus D2S44)
- Suspect's genotype ab
- ▶ Victim's genotype ac

Hypotheses (Weir et al, 1997, Fung and Hu, 2000)

 H_p : Contributors were the victim, suspect and m unknowns. H_d : Contributors were n unknowns.

R

- \rightarrow a = c('a', 'b', 'c')
- \triangleright p = c(0.0316, 0.0842, 0.0926)
- ▶ suspect <- 'a/b', victim <- 'a/c'

Likelihood ratios for the Simpson case

Defense	n=2			n=3		
Prosecution	F = 0	0.01	0.03	F = 0	0.01	0.03
				21606		
m = 1	70	44	26	938	345	107

Prosecution proposition (F=0)

- Pevid.ind(alleles = a, prob = p, x = m)
- \triangleright Pevid.gen(alleles = a, prob = p, x = m, T = c(victim, suspect))

Defense proposition (F = 0)

- \triangleright Pevid.ind(alleles = a, prob = p, x = n, u = c('a', 'b', 'c'))
- \triangleright Pevid.gen(alleles = a, prob = p, x = n)

Introduction

Single Crime Scene

Independence
Population substructure

R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson

More general situation

More general situation

Contributors from different ethnic groups

Fung and Hu (2001)

Pevid.ind, LR.ind (independence within and between ethnic groups)

Presence of related people

Hu and Fung (2003)

Example

Suspect not typed, his relative is tested
Two related people among unknown contributors

Pevid.rel

Introduction

Single Crime Scene

Independence
Population substructure
Relatedness
R package forensic

Mixed stain

Independence
Population substructure
People versus Simpson
More general situation

Conclusion

Single crime stain

- Suspect and offender are unrelated
- are members of the same subpopulation
- are close relatives

Mixed crime stain

- Contributors unrelated
- members of the same subpopulation
- may be related
- from different ethnic groups

Pevid.ind, LR.ind

Pevid.gen

Pmatch

Pevid.rel

Thank you for your attention!

Acknowledgement

The work was supported by GAČR 201/05/H007 and the project 1M06014 of the Ministry of Education, Youth and Sports of the Czech Republic.

Important publications

- BALDING AND NICHOLS(1994)

 DNA profile match probability calculation

 Forensic Science International 64, p. 125-140
- WEIR ET AL(1997) Interpreting DNA mixtures Journal of Forensic Sciences 42, p. 213-222
- FUNG AND HU(2000)
 Interpreting forensic DNA mixtures: allowing for uncertainty in population substructure and dependence
 Journal of Royal Statistical Society A 163, p. 241-254
- ZOUBKOVÁ, SUPERVISOR ZVÁROVÁ (2004)
 Master thesis (in Czech)
 Charles University, Prague

Software

R Development Core Team (2006)

R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org

MARUŠIAKOVÁ, M (2007)

forensic: Statistical methods in forensic genetics R package version 0.2