## Small groups and Questionnaires (for quality control)

## $\downarrow$

## Introduction

-the problem in general
-the classical approach for large groups
-a transcription for small groups

Universiteit Antwerpen

## $\measuredangle$

## The inquiry

-A questionnaire

- questions with answers on a Likert scale
-The inquiry
- 

item q\&a

- dimension :items around the same topic
- inquiry: collection of almost independent dimensions
- random ordering of items

Universiteit Antwerpen
-12 dimensions
-3 items per dimension

Dimension: content of lecture notes

Items
> readability understandable badly written

The construction of such a questionnaire is a time consuming process
Spooren P., Mortelmans D., Denekens J..- Student evaluation of teaching quality in higher education: development of an instrument based on 10 Likert scales.- In: Assessment and evaluation in higher education, 32:6(2007), p. 667-679

## The Likert Scale

| 1 | very bad | a | f |
| :--- | :--- | :--- | :--- |
| 2 | bad | b | e |
| 3 | close on <br> bad | c | d |
| 4 | close on <br> good | d | c |
| 5 | good | e | b |
| 6 | very good | f | a |
| Value | Meaning | Positive <br> formulation | Negative <br> formulation |

Universiteit Antwerpen

## The inquiry

-An independent agency
objectivity
-All at once (only one session $\curvearrowleft$ missing data) independence
-Written (Standard forms: encircling a-f per item) automatic reading
-Anonymity warranted no drawback

Universiteit Antwerpen

## Traditional analysis

- Scores on dimensions are summarized
location: mean
- scale: standard deviation
- A decision tree is build on this summary
- more than $x$ dimension under 3.5
- more than $x$ dimensions under 2
- reliability : cronbach alpha
-no control on outliers
Universiteit Antwerpen


## The probability model \& its inverse

- Model in words
multivariate hypergeometric
- sampling a box with cards (of different colors) without replacement multinomial
a method to put the cards into the box
Dirichlet
- describing the circumstances of the choice of a card
- Bayes-rule Universiteit Antwerpen


# The probability model \& its inverse for an item 

- Model in formulas:

$$
\begin{aligned}
& p\left(\left\{n_{i}\right\} \mid\left\{N_{i}\right\}, I\right)=\frac{\prod_{i} C_{n_{i}}^{N_{i}}}{C_{n}^{N}} \Theta\left(\sum_{n} N_{i}=N\right) \Theta\left(\sum_{i} n_{i}=n\right)
\end{aligned}
$$

$$
\begin{aligned}
& p\left(\left\{e_{i}\right\}_{a},\left\{p_{i}\right\}_{a}, \mid D_{a}, I\right) \propto \prod_{i} \frac{p_{i}^{n_{i}+\alpha_{i}}}{n_{i}!} \Theta\left(\sum_{i} n_{i}=n\right) \prod_{i} \frac{p_{i}^{e_{i}}}{e_{i}!} \Theta\left(\sum_{i} e_{i}=N-n\right)
\end{aligned}
$$

Universiteit Antwerpen

# The probability model \& its inverse for an dimension 

- Model in words:

| - | item 1 posterior $=\mathrm{DMMH}$ |
| :--- | :---: |
| - | item 2 prior $=$ posterior $($ item 1) $=\mathrm{DMMH}$ |
| - | item 3 prior $=$ posterior(item 2) $=\mathrm{DMMH}$ |

- DMMH belongs to the exponential family
updating


## $\measuredangle$

## Testing the new model

-Confirmation of the analysis done for large groups from small group model
-How reliable is the model?
-How reliable are the conclusions?

Universiteit Antwerpen

## How reliable is the classical model?

-Based on the central limit theorem

- Cronbach alpha (no direct transcription to small groups)is a measure for consistency.
-Rational argument behind this measure
- when ranked from undesired to desired (reversing order for negatively asked questions) there is a strong correlation between items belonging to the same dimension
- range of the ranking should be small


## は

# Range of the ranking for a dimension 

a filling in at random
b interpreting a positively formulated question as
 negatively formulated c filling in on position


Classification of respondents

Universiteit Antwerpen

## Quick \& dirty

-if the range of the ordered answers in a dimension is larger than 2 then classify the dimension as non respondent
-why not 1

- too many answers are classified as non respondent -why not 3
- the distinction between strongly agree and disagree a little bit should be clear


## A better way to classify

-see

- Finite Mixture and Markov Switching Models (Fruehwirth)
- Bayesian methods for Finite Population Sampling (Ghosh \& Meeden)
-adaptation to small groups is not straightforward
- going from items to dimensions is also not straightforward


## $\downarrow$


-Determine the number of respondents for a dimension
-count n
-determine the posterior (p \& e)(updating)
-calculate p(e)
-communicate this for each dimension: histog or box and whisker plot summary
Universiteit Antwerpen

## は

## Reliability

-Simplify the statements:

- bad---(no opinion)--- good
-Without non-respondents (no uncertainty)

$$
\text { odds }=\frac{N_{g}}{N-N_{g}}
$$

- With non-respondents (Odds becomes a RV)

$$
N_{g}=n_{g}+e_{g} \quad \text { Odds }=\frac{n_{g}+e_{g}}{N-n_{g}-e_{g}}
$$

Universiteit Antwerpen

## は

## Where does R coming in?

-Example from the faculty of science: 5 bachelor degrees: 3 years: $\pm 12$ courses : $\pm 300$ questionnaires

analysis has to be automated

- only simple commands are possible - output can be used without modifications


## は

## Automatization

Names and numbers
supplied by
commercial
OCR software
and
administration

```
documenten<-c("A steekproef 8 populatie 16.csv","B steekproef 19
populatie 36.csv","C steekproef 7 populatie 15.csv","D steekproef 20
populatie 39.csv","E steekproef 5 populatie 12.csv","F steekproef 5
populatie 8.csv","G steekproef 6 populatie 8.csv","H steekproef 5
populatie 9.csv","I steekproef 5 populatie 18.csv")
aantallen<-c(16,36,15,39,12,8,8,9,18)
```

attach (geg)
par(ask=T) $\mathrm{N}<$-aantallen[k] print(doc cbind(X2A,

# Analysis 

ndim<-itemfn[j]-itemst[j]
D2r<-apply(D2,1,max)-apply(D2,1,min)
Ind<-which(D2r<=2)
D2F--D2[Ind,]
D2S<-if(length(Ind)==1)\{median(D2F)\} else \{apply(D2F,1,median)\}\#\#\#\# controle The reliability control per dimension
bpdata<-c()
for(i in 1:6) \{bpdata[i]<-length(D2S[D2S==i])\}
\# barplot(bpdata)
nitem<-length(D2S)
bpsim<-bpdata+1 \#\#\# de 1 komt van de a priori
D2sim<-rmultinom(100,N-nitem,prob=bpsim)+bpdata
bpD2sim<-apply(D2sim,1, sum)
D2ABC<-matrix(bpD2sim, nrow=2)
pD2ABC<-apply(D2ABC,2,sum)/sum(bpD2sim)*100
pDABC<-c (pDABC, pD2ABC)
nDN $<-c(n D N$, nitem $)\}$
cat("Het percentage dat tot de model A B of C behoort uit $n$ zorgvuldige deelnemers van $N$ studenten $\backslash n$ ")
OndDim<-c("D1", "D2", "D3", "D4", "D5", "D6", "D7", "D8", "D9", "D10", "D11", "D12")
Cat<-c("A", "B", "C")
prD<-matrix(pDABC, ncol=3, byrow=T, dimnames=list(OndDim,Cat))
print(prD)
pdf(file=paste(k,".pdf", sep=""))
print(barchart(prD,col=rainbow(3),main=documenten[k]))
dev.off()
OndMax<-apply(prD,1,max)
OndOds<-OndMax/(100-OndMax)
nameMax<-function(index) \{if(index==1) nama<-"A" ;if(index<=2) nama<-"B" else nama<-"C";return(nama)\}
print(matrix(nDN, ncol=1, dimnames=list(OndDim, c("n"))))
cat("Aantal N") print(N)
indices<-c Universiteit Antwerpen

## ৮

A steekproef 8 populatie 16.csv


D1 D2 D3 D4 D5 D6 D7 D8 D9
D11
E steekproef 5 populatie 12.csv
F steekproef 5 populatie 8.csv

## Discussion

-Ad hoc classification is ok for now. It was checked on large groups and it is in accordance with the construction of the questionnaire: the method should be improved for new questionnaires.
-The multi-item technique is very demanding for the author of the questions
-The Dirichlet prior is taken uniform: it contains some information (unjustified?) Universiteit Antwerpen

Conclusions
-The expectation value of the Odds and the reference to the evidence used in model selection, gives a good indication of the reliability of the conclusion.

- After explaining the model and it consequences, it was decided to use it temporally only for feedback.
-The R-code did his job.

