
mboost - Componentwise Boosting

for Generalised Regression Models

Thomas Kneib & Torsten Hothorn

Department of Statistics
Ludwig-Maximilians-University Munich

13.8.2008
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Boosting in a Nutshell

• Boosting is a simple but versatile iterative stepwise gradient descent algorithm.

• Versatility: Estimation problems are described in terms of a loss function ρ (e.g. the
negative log-likelihood).

• Simplicity: Estimation reduces to iterative fitting of base-learners to residuals (e.g.
regression trees).

• Componentwise boosting yields

– a structured model fit (interpretable results),

– model choice and variable selection.

mboost - Componentwise Boosting for Generalised Regression Models 1



Thomas Kneib Boosting in a Nutshell

• Example: Estimation of a generalised linear model

E(y|η) = h(η), η = β0 + x1β1 + . . . + xpβp.

• Employ the negative log-likelihood as the loss function ρ.

• Componentwise boosting algorithm:

(i) Initialise the parameters (e.g. β̂j ≡ 0); set m = 0.

(ii) Compute the negative gradients (’residuals’)

ui = − ∂

∂η
ρ(yi, η)

∣∣∣∣
η=η̂[m−1]

, i = 1, . . . , n.
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(iii) Fit least-squares base-learning procedures for all the parameters yielding

bj = (X ′
jXj)−1X ′

ju

and find the best-fitting one:

j∗ = argmin
1≤j≤p

n∑

i=1

(ui − xijbj)2.

(iv) Update the estimates via

β̂
[m]
j∗ = β̂

[m−1]
j∗ + νbj∗,

and

β̂
[m]
j = β̂

[m−1]
j for all j 6= j∗.

(v) If m < mstop, increase m by 1 and go back to step (ii).
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• The reduction factor ν turns the base-learner into a weak learning procedure (avoids
to large steps along the gradient in the boosting algorithm).

• The componentwise strategy yields a structured model fit (recurs to single regression
coefficients).

• Most crucial point: Determine optimal stopping iteration mstop.

• Most frequent strategies: AIC-reduction or cross-validation.

• When stopping the algorithm, redundant covariate effects will never have been
selected as the best-fitting component

⇒ These drop completely out of the model.

• Componentwise boosting with early stopping implements model choice and variable
selection.
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mboost

• mboost implements a variety of base-learners and boosting algorithms for generalised
regression models.

• Examples of loss functions: L2, L1, exponential family log-likelihoods, Huber, etc.

• Three model types:

– glmboost for models with linear predictor.

– blackboost for prediction oriented black-box models.

– gamboost for models with additive predictors.
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• Various baselearning procedures:

– bbs: penalized B-splines for univariate smoothing and varying coefficients.

– bspatial: penalized tensor product splines for spatial effects and interaction
surfaces.

– brandom: ridge regression for random intercepts and slopes.

– btree: stumps for one or two variables.

– further univariate smoothing baselearners: bss, bns.
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Penalised Least Squares Base-Learners

• Several of mboost‘s baselearning procedures are based on penalised least-squares
fits.

• Characterised by the hat matrix

Sλ = X(X ′X + λK)−1X ′

with smoothing parameter λ and penalty matrix K.

• Crucial: Choose the smoothing parameter appropriately.

• To avoid biased selection towards more flexible effects, all base-learners should be
assigned comparable degrees of freedom

df(λ) = trace(X(X ′X + λK)−1X ′).
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• In many cases, a reparameterisation is required to achieve suitable values for the
degrees of freedom.

• Example: A linear effect remains unpenalised with penalised spline smoothing and
second derivative penalty

⇒ df(λ) ≥ 2.

• Decompose f(x) into a linear component and the deviation from the linear
component.

• Assign separate base-learners (with df = 1) to the linear effect and the deviation.

• Additional advantage: Allows to decide whether a non-linear effect is required.
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Forest Health Example: Geoadditive Regression

• Aim of the study: Identify factors influencing the health status of trees.

• Database: Yearly visual forest health inventories carried out from 1983 to 2004 in a
northern Bavarian forest district.

• 83 observation plots of beeches within a 15 km times 10 km area.

• Response: binary defoliation indicator yit of plot i in year t
(1 = defoliation higher than 25%).

• Spatially structured longitudinal data.
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• Covariates:

Continuous: average age of trees at the observation plot
elevation above sea level in meters
inclination of slope in percent
depth of soil layer in centimeters
pH-value in 0 – 2cm depth
density of forest canopy in percent

Categorical thickness of humus layer in 5 ordered categories
base saturation in 4 ordered categories

Binary type of stand
application of fertilisation
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• Specification of a logit model

P (yit = 1) =
exp(ηit)

1 + exp(ηit)

with geoadditive predictor ηit.

• All continuous covariates are included with penalised spline base-learners decomposed
into a linear component and the orthogonal deviation, i.e.

g(x) = xβ + gcentered(x).

• An interaction effect between age and calendar time is included in addition (centered
around the constant effect).

• The spatial effect is included both as a plot-specific random intercept and a bivariate
surface of the coordinates (centered around the constant effect).

• Categorical and binary covariates are included as least-squares base-learners.
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• Results:

– No effects of ph-value, inclination of slope and elevation above sea level.

– Parametric effects for type of stand, fertilisation, thickness of humus layer, and
base saturation.

– Nonparametric effects for canopy density and soil depth.

– Both spatially structured effects (surface) and unstructured effect (random effect)
with a clear domination of the latter.

– Interaction effect between age and calendar time.
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Summary

• Boosting provides both a structured model fit and a possibility for model choice and
variable selection in generalised regression models.

• Simple approach based on iterative fitting of negative gradients.

• Flexible class of base-learners based on penalised least squares.

• Implemented in the R package mboost (Hothorn & Bühlmann with contributions by
Kneib & Schmid).
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• References:

– Kneib, T., Hothorn, T. and Tutz, G. (2008): Model Choice and Variable Selection
in Geoadditive Regression. To appear in Biometrics.

– Bühlmann, P. and Hothorn, T. (2007): Boosting Algorithms: Regularization,
Prediction and Model Fitting. Statistical Science, 22, 477–505.

• Find out more:

http://www.stat.uni-muenchen.de/~kneib
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