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The River Wupper and its Power Plants
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The EU Water Framework Directive

Commits European Union member states to achieve good qualitative
and quantitative status of water bodies until 2015.

Good surface water status means both, good ecological and chemical
status. The first refers to the quality and functioning of the aquatic eco-
system.

For the Wupper this implies:

Reduce electric power production“Too warm upstream water” =⇒
or even shut down power plant

Definition of “Warm Water” depends on the fish life and reproduction
cycle and the given threshold may vary over the year.
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Outline of Talk

• Forecasting (upstream) Water Temperature

• Specification of Landmarks (Threshold, dependent fish spawning cycle)

• Discussion
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Literature on Water Temperature Forecasting

Hydrological Literature:

• Seasonal and daily variations of water temperature are significantly
important for aquatic resources. (Caissie et al., 2005, Hydrological Proces-
ses)

• Two model classes: physical (thermo-dynamic) and stochastic (stati-
stical) models. (Webb et al., 2008, Hydrological Processes)

Statistical Literature:

• Functional component models or dynamic factor models. (Cornillon et
al., 2008, CSDA; Stock & Watson, 2006, Handbook of Economic Forecasting)

• Functional Time Series. (Ferraty & Vieu, 2006, Nonparametric FDA, Springer-
Verlag)
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Smooth Cyclic Estimation

Let index t = (y, d) denote time with year y, day in year d and wt and
at be a 24-dimensional vectors of the hourly water and air temperature,
respectively, which decompose to

wt = µw(d) + w̄t, at = µa(d) + āyd.
↑ ↑

yearly trend yearly trend

Functions µw(d) and µa(d) are fitted with “wrapped” B-splines, i. e.

lim
d→365+

µ̂w(d) = lim
d→1−

µ̂w(d).
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Average Temperatures µw and µa
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Functional Principal Components Decomposition

w̄t shall be decomposed to a dynamic factor model, that is, we reduce
dimensions by extracting k suitable factors (done by PCA):

w̄t = ftΛT
w + εw,t

where Λw is a 24 × k dimensional loading matrix, ft a k dimensional
factor and εw,t a white noise residual.

Accordingly for the air temperature we extract h suitable factors:

āt = gtΛT
a + εa,t
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Fitted Principal Components
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The Dynamic Factor Model
Using the backshift operator ∆a,bft = (ft−a, . . . , ft−b). We assume an
autoregressive model for the factor ft:

ft = (∆1,pft)βf + (∆0,qgt)βg + εf,t.

This implies that ft depends on:

• water temperature factors of the p previous days

• air temperature factors of the q previous days

• the current day air temperature factors.

Note: In a forecasting setting the last point is only available as
meteorological forecast.
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Estimation of the factors ft and gt

We want to compare three different approaches to estimate the factors.

1) We start with a quite simple Least Squares estimation method where
the facor loadins are taken as

f̂t = w̄tΛw and ĝt = ātΛa

Pro: The remaining parameters βf and βgcan easily be found
using least squares regression.

Con: The resulting estimates are not Maximum Likelihood-based.

We need to incorporate our stochastic models in the estimation method.
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Estimation of the factors ft and gt (continued)

2) In a Maximum Likelihood approach we assume that the residuals in
the former mentioned models follow normal distributions:

εw,t ∼ N
(
0, diag(σ2

w)
)

and εf,t ∼ N
(
0, diag(σ2

f)
)
.

3) We incorporate a stochastic autoregressive model for the air tempe-
rature, as well, in a Full Maximum Likelihood estimation method:

gt = (∆1,q̃gt)β̃g + εg,t

asuming εa,t ∼ N
(
0, diag(σ2

a)
)

and εg,t ∼ N
(
0, diag(σ2

g)
)
.

The unknown parameters θ = (βf , βg, σ
2
f , σ2

w) and θ̃ = (θ, β̃g, σ̃
2
g, σ̃

2
a)

are now estimated using an EM-algorithm.
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Model Selection (in progress)
In order to select the best performig model we divide our dataset in a
training and a forecasting sample. To measure the model quality one
could, for example, make use of the Mean Squared Prediction Error
defined by:

MSPE =
1
n

n∑

t=i

(wt − ŵt)(wt − ŵt)T .

We have to select:

• k and h; the optimal number of factors for water and air temperature,
respectively,

• p and q; the optimal number of time lags for water and air tempera-
ture, respectively, (we treat q̃ = 2 as fixed)

• the optimal estimation method.
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Demonstration
Warm spring days over Whitsun 2008
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Demonstration
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Multiple Day Forecast

Multiple day forecasts show discontinuities.

Solution: To achieve a continuous m day forecast we divide our time
axis into time intervals of length m, i. e.

wm
t = wt̃ = (wyd1, . . . ,wyd24,wy(d+1)1, . . .wy(d+m)24)

The above models are re-fitted in analogy to the 24h case.
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Demonstration
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Comparison to other modelling approaches

We compared our Least Squares model to three approaches to model
the daily maximum temperature presented in Cassie et al. (1998, Can. J. Civ.
Eng.)

1. w̄max
t = (∆0,2ā

max
t )β1 + ε1t resulted in an RMSE of 1.295◦C.

2. w̄max
t = (∆1,2w̄

max
t )β2 + K āmax

t resulted in an RMSE of 2.439◦C.

3. w̄max
t = ζ0

1−δ1B āmax
t + 1

1−φ1Bnt resulted in an RMSE of 1.018◦C.

For p = 2, q = 1, k = h = 3 and q̃ = 2 our Least Squares Model yielded
an RMSE of 0.42◦C.
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Finding Seasonal Pattern

Besides forecasting is the specification of seasonal pattern an important
issue, since:

• Water temperature has to stay below ecologically justified thresholds
to preserve the fish populations.

• Threshold values depend on season, or more precisely on reproduc-
tion cycle of fish.

• Seasons can vary like an early spring or late summer.

• What is the “reference year”?
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Literature in ’Warping’ and ’Landmark Specification’

• Landmark specification in growth curves. (Kneip & Gasser, 1992, Annals
of Statistics; Gasser & Kneip, 1995, JASA)

• Automatic Warping (or self-modelling). (Ramsay & Li, 1998, JRSS B; Ger-
vini & Gasser, 2004, JRSS B)

• We need an “online” warping, as data arrives over time.
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Structure of Water temperature
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Different modelling for landmark registration

Let t = (y, d, h) where h is the hour in day d.

water: wt = wydh = w̄yd + xydh

↑ ↑
daily avg. temp. residual

↓ ↓
air: at = aydh = āyd + zydh

A principal component analysis is run on the residuals xydh and zydh

after substracting the mean daily temperature course:

xydh = µx(d) + x̄ydh and zydh = µz(d) + z̄ydh.
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Seasonal Pattern in PCA coefficients

xydh = µx(h) +
Kx∑

k=1

fyd,kλx,k(h)
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Landmark based on First PCA Score

We check, whether H0 : E(fyd,1) ≤ 0 is rejected.
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Correlation between Water and Air Temperature

Water: xydh = µx(h) +
K∑

k=1

fyd,kλx,k(h)

Air: zydh = µz(h) +
K∑

k=1

gyd,kλz,k(h)

Canonical correlation:
For coefficient vectors δT

k and γT
k we obtain the maximal correlation bet-

ween water and air temperature, i. e.

max Cor(δT
k xt, γ

T
k zt), k = 1, 2, . . .
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Canonical Correlation Landmark
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Canonical Correlation Contributions
We look at the canonical correlation:

water: ωt = δT
1 xt air: νt = γT

1 zt both: ωt · νt
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Plotting the Landmarks
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Warping the Years
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Discussion

• Analysis on Forecasting of Water Temperature is an important issue
(and is getting even more important based on new EU laws).

• The issue is not fully covered by classical and newer approaches in
time series analysis.

• Finding landmarks for seasonal variation is relevant from an ecologi-
cal point of view.

• More to do: Compare our time warp results to observed fish spawning
cycles.
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