
Good Relations with R

Good Relations with R

Kurt Hornik David Meyer

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Motivation

Meyer, Leisch & Hornik (2003), “The Support Vector Machine under test”,
Neurocomputing: Large scale benchmark analysis of performance of SVMs
for classification and regression problems. Lead to:

Hothorn, Leisch, Zeileis & Hornik (2005), “The design and analysis of bench-
mark experiments”, Journal of Computational and Graphical Statistics.

Hornik & Meyer (2007), “Deriving consensus rankings from benchmarking
experiments”, Proceedings of GfKl 2006.

In particular: how can the results on individual data sets be aggregated?
More generally: how can possibly partial preference relations be aggre-
gated?

Such issues are dealt with in social choice (going back to Borda and Con-
dorcet), group choice, multi criteria decision making, . . .

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Consensus relations

Aggregation of individual relations amounts to determinining so-called con-
sensus relations, e.g., as a central relation R which minimizes

Φ(R) =
B∑

b=1

wbd(Rb, R)

for a suitable dissimilarity measure d over a suitable class of relations R
(e.g., preferences or linear orders).

Applications abound: rank proposals, candidates, journals, web pages, . . . ,
based on possibly incomplete individual rankings.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Relations

Given k sets of objects X1, . . . , Xk, a k-ary relation R on D(R) =
(X1, . . . , Xk) is a subset G(R) of the Cartesian product X1 × · · · ×Xk. I.e.,

• D(R), the domain of R, is a k-tuple of sets

• G(R), the graph of R, is a set of k-tuples

To provide a faithful computational model, need tuples (where R vectors can
serve reasonably well) and sets.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Sets in base R

A set is a collection of distinct objects.

Base R provides some functionality for set computations (union, intersect,
setdiff, . . . ), but no data structures, and e.g.

R> union(list(1), list("1"))

[[1]]

[1] 1

[[2]]

[1] "1"

R> intersect(list(1), list("1"))

[[1]]

[1] "1"

(Part of the “problem” is that match is used for comparing elements.)

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Package sets

Package sets provides data structures and basic operations for ordinary
sets, and generalizations such as fuzzy sets, multisets, and fuzzy multisets
(and tupels).

Sets can be created via set or as.set.

Operations include union, intersection, Cartesian product, etc., mostly also
available as binary operators (|, &, *, etc.).

R> A <- set(1)

R> B <- set("1")

R> A | B

{1, 1}

R> A & B

{}

Printing by default does not quote character strings; comparison is per-
formed via identical.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Power sets and outer products

Power sets can be obtained via 2 ^.

Using set outer, one can apply a function on all factorial combinations of
the elements of two sets.
R> S <- set(1, 2, 3)

R> PS <- 2^S

R> set_outer(PS, PS, FUN = set_is_subset)

{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

{} TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

{1} FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE

{2} FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE

{3} FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE

{1, 2} FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

{1, 3} FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

{2, 3} FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

{1, 2, 3} FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Food for thought

Sets are really tricky.

Their elements should be “distinct”, but how should they be compared? (Us-
ing ==, all.equal, identical, . . . ?)

Elements of sets have no position: hence, positional subscripting is disal-
lowed. Iteration is used for accessing the elements, currently (rather low-
level) via lapply/as.list.

Work on a general iteration mechanism for (base) R is under way.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Fuzzy sets

Fuzzy sets are sets whose elements have degrees of membership. Intro-
duced by Zadeh (1965) as an extension of the classical notion of a set,
extending the basic set operations ∩,∪,¬ to the min, max, 1− of the corre-
sponding membership values.

Modern fuzzy set theory knows a variety of other extension (“fuzzy logics”)
via t-norms, t-conorms, and negations.

Package sets supports the most popular fuzzy logic families (drastic, prod-
uct, Lukasiewicz, Fodor, Frank, Hamacher, . . . ).

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Package relations

Package relations provides data structures and algorithms for k-ary rela-
tions with arbitrary domains, featuring relational algebra, predicate functions,
and fitters for consensus relations.

Relations can be created via relation by giving the graph, characteristic
function or incidences and possibly the domain, or via as.relation (e.g.,
unordered factors coerced to equivalence relations; ordered factors and nu-
meric vectors to order relations, data frames taken as relation tables).

Characteristic function: membership function of the graph.

Incidences: array of memberships of the corresponding tuples in the graph.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Under the hood

The R universe features many “relational” data structures (cluster partitions
correspond to equivalence relations; graphs, hypergraphs and networks;
. . . ).

Relations are implemented as an S3 class which allows for a variety of inter-
nal representations (even though currently, only dense array representations
of the incidences are employed). (“Containers”.)

Computations on relations are based on high-level generic getters for the
basic constituents: relation domain, relation graph, relation charfun,
relation incidence.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Example

R> R <- as.relation(c(1, 2))

R> relation_domain(R)

Relation domain:

A pair with elements:

{1, 2}

{1, 2}

R> relation_graph(R)

Relation graph:

A set with pairs:

(1, 1)

(1, 2)

(2, 2)

R> relation_incidence(R)

Incidences:

1 2

1 1 1

2 0 1

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Example

R> S <- set("Peter", "Paul", "Mary")

R> R <- relation(incidence = set_outer(2^S, ‘<=‘))

R> R

A binary relation of size 8 x 8.

R> plot(R)

{}

{Mary}

{Mary, Paul}

{Mary, Paul, Peter}

{Mary, Peter}

{Paul}

{Paul, Peter}

{Peter}

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Endorelations and predicates

Endorelations are binary relations with domain D = (X, X).

Such relations can be reflexive, symmetric, transitive, . . . .

Important combinations of the basic properties include

equivalance reflexive, symmetric, and transitive

preference complete, reflexive, and transitive (also known as “weak order”)

linear order antisymmetric preference

These properties can be tested for using relation is foo predicates.

The summary method for relations applies all available predicates.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Basic operations

Rich collection of basic operations, including

• Complement and dual

• Comparisons (using the natural ordering), meet and join

• Composition, union, intersection, difference

• Projection, product and various joins

• Transitive reduction and closure

• Plotting (via Rgraphviz) for certain endorelations (using Hasse dia-
grams)

Implements relational algebra of Codd (1970) using convenient binary oper-
ators.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Ensembles

Relation ensembles are collections of relations Rb = (Db, Gb), 1 ≤ b ≤ B
with identical domains, i.e., D1 = · · · = DB.

Implemented as suitably classed lists of relation objects, making it possible
to use lapply for computations on the individual relations in the ensemble.

Available methods for relation ensembles include those for subscripting, c,
t, rep, and print.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Dissimilarities

Several methods for computing dissimilarities between (ensembles of) rela-
tions, with default the symmetric difference distance (the cardinality of the
symmetric difference of two relations, i.e., the number of tuples contained in
exactly one of two relations).

Characterizable as the least element moves distance in the lattice of rela-
tions on the same domain under the natural (set inclusion of the graphs)
order. For preference relations: Kemeny-Snell distance.

In addition, Cook-Kress and Cook-Kress-Seiford distances.

Allows for dissimilarity based analysis of relation ensembles (clustering,
scaling, . . . ).

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Consensus relations

Several methods for obtaining consensus relations, including Borda, Con-
dorcet and Copeland methods, but most importantly for finding central rela-
tions minimizing weighted average symmetric distance

Φ(R) =
B∑

b=1

wbd(Rb, R)

over suitable “families” of relation (e.g., equivalence, preferences and linear
orders).

Accomplished by reformulating the consensus problem as a binary linear
program∑

i,j

cij(w1, . . . , wB, R1, . . . , RB)xij → max

for the 0/1 incidences xij of the consensus relation.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Consensus relations

Allows using solvers from packages Rcplex, Rglpk, Rsymphony and lp-
Solve.

(Encapsulates creation and solution of MILPs, to be spun off into an opti-
mization infrastructure package eventually.)

Always possible to find all solutions via poor person’s branch and cut (only
lp solve provides some solver support for this).

For equivalences and preferences, can specify the desired number of equiv-
alence classes. For this, consensus problem is reformulated as a bi-
nary quadratic program, currently solved via linearization, with a direct
BQP/Rcplex method under way.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Example: SVM Benchmarking

Results for benchmarking 17 classification methods on 21 data sets: relation
ensemble of length 21 with encoding

I(Rb)i,j =


1 if method i did not significantly outperform method j

on data set b (was ≤)
0 otherwise

Load the data set:
R> data("SVM_Benchmarking_Classification")

R> SVM_Benchmarking_Classification

An ensemble of 21 relations of size 17 x 17.

Fit all consensus linear orders and preferences:

R> cens_L <- relation_consensus(SVM_Benchmarking_Classification,

+ "SD/L", all = TRUE)

R> cens_P <- relation_consensus(SVM_Benchmarking_Classification,

+ "SD/P", all = TRUE)

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Consensus Relations: Linear Orders

R> plot(c(cens_L, min(cens_L)), layout = c(1, 5))

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

bagging

dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars

multinom

nnet

qda

randomForest

rpart

svm

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Consensus Relations: Preferences

R> plot(cens_P, layout = c(1, 4))

bagging dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinom

nnet

qda

randomForest

rpart

svm bagging dbagging

fda.bruto

fda.mars

glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinom

nnet

qda

randomForest

rpart

svm bagging dbagging

fda.bruto

fda.mars glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinomnnet

qda

randomForest

rpart

svm bagging dbagging

fda.bruto

fda.mars glm

knn

lda

lvq

mart

mda.bruto

mda.mars multinomnnet

qda

randomForest

rpart

svm

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Extensions

Of course, we can also do . . .

• Fuzzy relations

• Prototype-based partitioning (“clustering”) of relation ensembles

• Social choice (e.g., determine the/all “k-winners”):
R> relation_choice(SVM_Benchmarking_Classification, k = 4)

{bagging, dbagging, randomForest, svm}

• and much more.

Kurt Hornik and David Meyer useR! 2008



Good Relations with R

Coordinates

Kurt Hornik, David Meyer
Wirtschaftsuniversität Wien
Augasse 2–6, A-1090 Wien

E-mail: Firstname.Lastname@wu-wien.ac.at
WWW: http://statmath.wu-wien.ac.at/~hornik/

http://wi.wu-wien.ac.at/~meyer/

Kurt Hornik and David Meyer useR! 2008

http://statmath.wu-wien.ac.at/~hornik/
http://wi.wu-wien.ac.at/~meyer/

	Motivation
	Consensus relations
	Relations
	Sets in base R
	Package sets
	Power sets and outer products
	Food for thought
	Fuzzy sets
	Package relations
	Under the hood
	Example
	Example
	Endorelations and predicates
	Basic operations
	Ensembles
	Dissimilarities
	Consensus relations
	Consensus relations
	Example: SVM Benchmarking
	Consensus Relations: Linear Orders
	Consensus Relations: Preferences
	Extensions
	Coordinates

