Variable Selection and Model Choice in Survival Models with Time-Varying Effects Boosting Survival Models

Benjamin Hofner ¹

Department of Medical Informatics, Biometry and Epidemiology (IMBE) Friedrich-Alexander-Universität Erlangen-Nürnberg

joint work with Thomas Kneib and Torsten Hothorn

Department of Statistics Ludwig-Maximilians-Universität München

useR! 2008

¹benjamin.hofner@imbe.med.uni-erlangen.de

Introduction	Technical Preparations	Cox _{flex} Boost 000000000	Summary / Outlook	References
Introductio	on			

Cox PH model:

$$\lambda_i(t) = \lambda(t, \mathbf{x}_i) = \lambda_0(t) \exp(\mathbf{x}'_i \boldsymbol{\beta})$$

with

- $\lambda_i(t)$ hazard rate of observation i [i = 1, ..., n]
- $\lambda_0(t)$ baseline hazard rate
- \mathbf{x}_i vector of covariates for observation $i \ [i = 1, ..., n]$
- eta vector of regression coefficients

Problem: restrictive model, not allowing for

- non-proportional hazards (e.g., time-varying effects)
- non-linear effects

Introduction

Technical Preparations

Cox_{flex}Boost

Summary / Outlook

References

Additive Hazard Regression

Generalisation: Additive Hazard Regression (Kneib & Fahrmeir, 2007)

 $\lambda_i(t) = \exp(\eta_i(t))$

with

$$\eta_i(t) = \sum_{j=1}^J f_j(\mathbf{x}_i(t)),$$

generic representation of covariate effects $f_j(\mathbf{x}_i)$

- a) linear effects: $f_j(\mathbf{x}_i(t)) = f_{\text{linear}}(\tilde{x}_i) = \tilde{x}_i\beta$
- b) smooth effects: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(\tilde{x}_i)$
- c) time-varying effects: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(t) \cdot \tilde{x}_i$ where $\tilde{x}_i \in \mathbf{x}_i(t)$.

Note:

c) includes log-baseline for $\tilde{x}_i \equiv 1$

Introduction	○●○	Cox _{flex} Boost 0000000000	Summary / Outlook	References
P-Splines				
	terms can be represe Marx, 1996)	ented using P-sp	olines	
• mc	odel term (x can be $f_j(x) = \sum_{m=1}^M$	$\beta_{jm}B_{jm}(x)$ (j	$=1,\ldots,J$)	
• pe	~	$\left\{\begin{array}{c}\kappa_{j}\boldsymbol{\beta_{j}^{\prime}}\mathbf{K}\boldsymbol{\beta_{j}}\\0\end{array}\right.$	cases b),c) case a)	
ما جانب ر				

with

• $\mathbf{K} = \mathbf{D}'\mathbf{D}$ (i.e., cross product of difference matrix \mathbf{D}) $\mathbf{D} \stackrel{e.g.}{=} \begin{pmatrix} 1 & -2 & 1 & \dots \\ 0 & 1 & -2 & 1 & \dots \end{pmatrix}$ • κ_j smoothing parameter

(larger $\kappa_j \Rightarrow$ more penalization \Rightarrow smoother fit)

Introduction	Technical Preparations	Cox _{flex} Boost 000000000	Summary / Outlook	References
Inference				

Penalized Likelihood Criterion:

(NB: this is the **full** log-likelihood)

$$\mathcal{L}_{\mathsf{pen}}(oldsymbol{eta}) = \sum_{i=1}^{n} \left[\delta_i \eta_i(t_i) - \int_0^{t_i} \exp(\eta_i(t)) \, dt \right] - \sum_{j=0}^{J} \operatorname{pen}_j(oldsymbol{eta}_j)$$

- T_i true survival time
- C_i censoring time
- $t_i = \min(T_i, C_i)$ observed survival time (right censoring)
- $\delta_i = \mathbb{1}(T_i \leq C_i)$ indicator for non-censoring

Problem:

Estimation and in particular model choice

Summary / Outlook

$\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$

Aim:

Maximization of a (potentially) high-dimensional log-likelihood with different modeling alternatives

Thus, we use:

- Iterative algorithm
- Likelihood-based boosting algorithm
- Component-wise base-learners

Therefore:

 Use one base-learner g_j(·) for each covariate (or each model component) [j ∈ {1,..., J}

Component-Wise Boosting

as a means of estimation and variable selection combined with model choice.

Summary / Outlook

References

$\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$

Aim:

Maximization of a (potentially) high-dimensional log-likelihood with different modeling alternatives

Thus, we use:

- Iterative algorithm
- Likelihood-based boosting algorithm
- Component-wise base-learners

Therefore:

• Use one base-learner $g_j(\cdot)$ for each covariate (or each model component) [$j \in \{1, \dots, J\}$]

Component-Wise Boosting

as a means of estimation and variable selection combined with model choice.

$\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$

Aim:

Maximization of a (potentially) high-dimensional log-likelihood with different modeling alternatives

Thus, we use:

- Iterative algorithm
- Likelihood-based boosting algorithm
- Component-wise base-learners

Therefore:

 Use one base-learner g_j(·) for each covariate (or each model component) [j ∈ {1,...,J}]

Component-Wise Boosting

as a means of estimation and variable selection combined with model choice.

Introduction

Technical Preparations

Cox_{flex}Boost ●000000000 Summary / Outlook

References

Cox_{flex}Boost Algorithm

(i) **Initialization:** Iteration index m := 0.

• Function estimates (for all $j \in \{1, \dots, J\}$):

 $\hat{f}_{j}^{[0]}(\cdot)\equiv 0$

• Offset (MLE for constant log hazard):

$$\hat{\eta}^{[0]}(\cdot) \equiv \log\left(\frac{\sum_{i=1}^{n} \delta_{i}}{\sum_{i=1}^{n} t_{i}}\right)$$

Technical Preparations 000

Cox_{flex}Boost 0●00000000 Summary / Outlook

References

(ii) Estimation: m := m + 1.

Fit all (linear/P-spline) base-learners separately

$$\hat{g}_j = g_j(\cdot; \hat{oldsymbol{eta}}_j), \ \forall j \in \{1, \ldots, J\},$$

by penalized MLE, i.e.,

$$\hat{oldsymbol{eta}}_{j} = rg\max_{oldsymbol{eta}} \mathcal{L}^{[m]}_{j, \mathsf{pen}}(oldsymbol{eta})$$

with the penalized log-likelihood (analogously as above)

$$\begin{split} \mathcal{L}_{j,\mathsf{pen}}^{[m]}(\boldsymbol{\beta}) &= \sum_{i=1}^n \left[\delta_i \cdot (\hat{\eta}_i^{[m-1]} + g_j(x_i(t_i);\boldsymbol{\beta})) \right. \\ &\left. - \int_0^{t_i} \exp\left\{ \hat{\eta}_i^{[m-1]}(\tilde{\mathbf{t}}) + g_j(x_i(\tilde{\mathbf{t}});\boldsymbol{\beta}) \right\} d\tilde{\mathbf{t}} \right] - \mathsf{pen}_j(\boldsymbol{\beta}), \end{split}$$

with the additive predictor η_i split

- into the estimate from previous iteration $\hat{\eta}_i^{[m-1]}$
- and the current base-learner $g_j(\cdot; \beta)$

(iii) **Selection:** Choose base-learner \hat{g}_{j^*} with

$$j^* = \arg \max_{j \in \{1, ..., J\}} \mathcal{L}_{j, \mathsf{unpen}}^{[m]}(\hat{\boldsymbol{eta}}_j)$$

(iv) Update:

• Function estimates (for all $j \in \{1, \dots, J\}$):

$$\hat{f}_{j}^{[m]} = \begin{cases} \hat{f}_{j}^{[m-1]} + \mathbf{\nu} \cdot \hat{g}_{j} & j = j^{*} \\ \hat{f}_{j}^{[m-1]} & j \neq j^{*} \end{cases}$$

• Additive predictor (= fit):

$$\hat{\eta}^{[m]} = \hat{\eta}^{[m-1]} + \mathbf{v} \cdot \hat{g}_{j^*}$$

with step-length $u \in$ (0,1] (here: u = 0.1)

(v) **Stopping rule:** Continue iterating steps (ii) to (iv) until $m = m_{\text{stop}}$

Introduction

Technical Preparations

Cox_{flex}Boost

Summary / Outlook

References

Some Aspects of Cox_{flex}Boost

Estimation	full penalized MLE $\cdot \nu$ (step-length)
Selection	based on unpenalized log-likelihood $\mathcal{L}_{j,unpen}^{[m]}$
Base-Learners	specified by (initial) degrees of freedom, i.e., $df_j = \widetilde{df_j}$

- Likelihood-based boosting (in general): See, e.g., Tutz and Binder (2006)
- Above aspects in Cox_{flex}Boost: See, e.g., model based boosting (Bühlmann & Hothorn, 2007)

Introduction

Technical Preparations

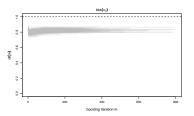
Summary / Outlook

References

Degrees of Freedom

- Specifying df more intuitive than specifying smoothing parameter κ
- Comparable to other modeling components, e.g., linear effects
- Problem: Not constant over the (boosting) iterations

• But simulation studies showed: No big deviation from the initial $\mathrm{df}_j = \widetilde{df}_j$



Estimated degrees of freedom traced over the boosting steps for the flexible base-learners of x_3 (in 200 replicates) and initially specified degrees of freedom (dashed line).

Summary / Outlook

References

Model Choice

Recall from generic representation:

 $f_j(\tilde{x}_i)$ can be a

- a) linear effect: $f_j(\mathbf{x}_i(t)) = f_{\text{linear}}(\tilde{x}_i) = \tilde{x}_i \beta$
- b) smooth effect: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(\tilde{x}_i)$
- c) time-varying effect: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(t) \cdot \tilde{x}_i$

• \Rightarrow We see: \tilde{x}_i can enter the model in 3 different ways

• But how?

- Add all possibilities as base-learners to the model. Boosting can chose between the possibilities
- But the df must be comparable! Otherwise: more flexible base-learners are preferred

Summary / Outlook

References

Model Choice

Recall from generic representation:

 $f_j(\tilde{x}_i)$ can be a

- a) linear effect: $f_j(\mathbf{x}_i(t)) = f_{\text{linear}}(\tilde{x}_i) = \tilde{x}_i \beta$
- b) smooth effect: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(\tilde{x}_i)$
- c) time-varying effect: $f_j(\mathbf{x}_i(t)) = f_{\text{smooth}}(t) \cdot \tilde{x}_i$
- \Rightarrow We see: \tilde{x}_i can enter the model in 3 different ways
- But how?
- Add all possibilities as base-learners to the model. Boosting can chose between the possibilities
- But the df must be comparable! Otherwise: more flexible base-learners are preferred

- For higher order differences $(d \ge 2)$: df $> 1 (\kappa \to \infty)$
- Polynomial of order d-1 remains unpenalized

Solution:

Decomposition (based on Kneib, Hothorn, & Tutz, 2008)

$$g(x) = \underbrace{\beta_0 + \beta_1 x + \ldots + \beta_{d-1} x^{d-1}}_{\text{unpenalized, parametric part}} + \underbrace{g_{centered}(x)}_{\text{deviation from polynomial}}$$

- Add unpenalized part as separate, parametric base-learners
- Assign df = 1 to the centered effect (and add as P-spline base-learner)
- Analogously for time-varying effects

Technical realization (see Fahrmeir, Kneib, & Lang, 2004):

decomposing the vector of regression coefficients β into $(\tilde{\beta}_{unpen}, \tilde{\beta}_{pen})$ utilizing a spectral decomposition of the penalty matrix

Early Stopping

- **9** Run the algorithm m_{stop} -times (previously defined).
- 2 Determine new $\widehat{m}_{stop,opt} \leq m_{stop}$:
 - ... based on out-of-bag sample (with simulations easy to use)
 - ... based on information criterion, e.g., AIC
- ⇒ Prevents algorithm to stop in a local maximum (of the log-likelihood)
- \Rightarrow Early stopping prevents overfitting

Variable Selection and Model Choice

- ... is achieved by
 - selection of base-learner (in step (iii) of Cox_{flex}Boost), i.e., component-wise boosting and
 - early stopping

Simulation-Results (in Short)

- Good variable selection strategy
- Good model choice strategy if only linear and smooth effects are used
- Selection bias in favor of time-varying base-learners (if present) ⇒ standardizing time could be a solution
- Estimates are better if model choice is performed

 $\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$ is implemented using R

• Crucial computation: Integral in $\mathcal{L}_{j,\text{pen}}^{[m]}(\beta)$:

$$\int_{0}^{t_{i}} \exp\left\{\hat{\eta}_{i}^{[m-1]}(\tilde{\mathbf{t}}) + g_{j}(x_{i}(\tilde{\mathbf{t}});\beta)\right\} d\tilde{\mathbf{t}}$$

- time consuming
- very often evaluated (maximization of $\mathcal{L}_{i,\text{pen}}^{[m]}(\beta)$)
- R-function integrate() slow in this context \Rightarrow (specialized) vectorized trapezoid integration implemented $\Rightarrow \approx 100$ times quicker
- Efficient storage of matrices can reduce computational burden ⇒ recycling of results

 $\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$ is implemented using R

• Crucial computation: Integral in $\mathcal{L}_{i,pen}^{[m]}(\beta)$:

$$\int_{0}^{t_{i}} \exp\left\{\hat{\eta}_{i}^{[m-1]}(\tilde{\mathbf{t}}) + g_{j}(x_{i}(\tilde{\mathbf{t}});\beta)\right\} d\tilde{\mathbf{t}}$$

- time consuming
- very often evaluated (maximization of $\mathcal{L}_{i,\text{pen}}^{[m]}(\beta)$)
- R-function integrate() slow in this context \Rightarrow (specialized) vectorized trapezoid integration implemented $\Rightarrow \approx 100$ times quicker
- Efficient storage of matrices can reduce computational burden ⇒ recycling of results

 $\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}$ is implemented using R

• Crucial computation: Integral in $\mathcal{L}_{i,\text{pen}}^{[m]}(\beta)$:

$$\int_0^{t_i} \exp\left\{\hat{\eta}_i^{[m-1]}(\tilde{\mathbf{t}}) + g_j(x_i(\tilde{\mathbf{t}});\boldsymbol{\beta})\right\} d\tilde{\mathbf{t}}$$

- time consuming
- very often evaluated (maximization of $\mathcal{L}_{i,\text{pen}}^{[m]}(\beta)$)
- R-function integrate() slow in this context \Rightarrow (specialized) vectorized trapezoid integration implemented $\Rightarrow \approx 100$ times quicker
- Efficient storage of matrices can reduce computational burden ⇒ recycling of results

Summary & Outlook

 $\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}\ldots$

- ... allows for variable selection and model choice.
- ... allows for flexible modeling
 - flexible, non-linear effects
 - time-varying effects (i.e., non-proportional hazards)
- ... provides functions to manipulate and show results (summary(), plot(), subset(), ...)

To be continued . . .

- Formula for AIC (for Boosting in Survival Models)
- Include mandatory covariates (update in each step)
- Measure for variable importance: e.g., $\int |\hat{f}_i^{[m_{stop}]}(\cdot)|$

 $\mathsf{Cox}_{\mathsf{flex}}\mathsf{Boost}\ldots$

- ... allows for variable selection and model choice.
- ... allows for flexible modeling
 - flexible, non-linear effects
 - time-varying effects (i.e., non-proportional hazards)

References

• ... provides functions to manipulate and show results (summary(), plot(), subset(), ...)

To be continued ...

- Formula for AIC (for Boosting in Survival Models)
- Include mandatory covariates (update in each step)
- Measure for variable importance: e.g., $\int |\hat{f}_i^{[m_{stop}]}(\cdot)|$

Introduction	Technical Preparations	Cox _{flex} Boost 0000000000	Summary / Outlook	References
Literature				
0.11		T (0007) D	1	

Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. *Statistical Science*, 22(4), 477-505.

Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. *Statistical Science*, 11(2), 89–121.

Fahrmeir, L., Kneib, T., & Lang, S. (2004). Penalized structured additive regression: A Bayesian perspective. *Statistica Sinica*, 14, 731–761.

Kneib, T., & Fahrmeir, L. (2007). A mixed model approach for geoadditive hazard regression. *Scand. J. Statist.*, *34*, 207–228.

- Kneib, T., Hothorn, T., & Tutz, G. (2008). Variable selection and model choice in geoadditive regression. *Biometrics (accepted)*.
- Tutz, G., & Binder, H. (2006). Generalized additive modelling with implicit variable selection by likelihood-based boosting. *Biometrics*, 62, 961–971.

