Estimation of Theoretically Consistent Stochastic Frontier Functions in R

Arne Henningsen

Department of Agricultural Economics University of Kiel, Germany

Outline

- Stochastic Frontier Analysis
- Theoretical Consistency
- Restricted Estimation of Frontier Functions
- (Empirical Example)
- Summary and Outlook

Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

Stochastic Frontier Analysis

- Production economics
- Assumption of traditional empirical analyses: all producers always manage to optimize their production process
 - \Rightarrow All departures from the optimum
 - = random statistical noise
 - \Rightarrow $y = f(\mathbf{x}, \boldsymbol{\beta}) + v$, e.g. with $v \sim N(0, \sigma^2)$
- Practice: producers do not always succeed in optimizing their production
- Stochastic Frontier Analysis (SFA) accounts for failures in optimization (Meeusen & van den Broeck 1977; Aigner, Lovell & Schmidt 1977)

Christian-Albrechts-Universität zu Kie

CAU

Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

Stochastic Frontier Analysis

C A U

Software for Stochastic Frontier Analysis

- LIMDEP
- STATA
- FRONTIER (Version 4.1)
 - \Rightarrow Tim Coelli (CEPA, Univ. of Queensland, Brisbane)
 - \Rightarrow freely available for download (including FORTRAN source)
 - \Rightarrow but not really free (no license specified)
 - $\Rightarrow\,$ command line interface / "instruction file"
 - \Rightarrow THE software for SFA for a long time
 - \Rightarrow development stopped in 1996
 - $\Rightarrow \text{ LIMDEP and STATA have more features today,} \\ \text{but FRONTIER is still widely used}$

Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

- Microeconomic theory requires several properties of a production function y = f(x, β)
- Most important: "monotonicity"
 - \Rightarrow f(.) monotonically increasing in inputs
 - \Rightarrow all marginal products $\partial f / \partial x_i$ are non-negative
- Monotonicity even more important in Stochastic Frontier Analysis (SFA)

Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

Non-monotone Production Frontier

7 / 12

C A U

Restricted Estimation of Frontier Functions

- Not available in standard software packages
- Econometric approaches for restricted estimations
 - ⇒ ML estimation with restrictions imposed at the sample mean (e.g. Bokusheva and Hockmann: Production Risk and Technical Inefficiency in Russian Agriculture, ERAE, 2006)
 - ⇒ MCMC estimation with restrictions imposed at all data points (O'Donnell & Coelli: A Bayesian Approach to Imposing Curvature on Distance Functions, JE, 2005)
 - ⇒ Three-Step Estimation with monotonicity imposed at all data points (Henningsen & Henning: Estimation of Theoretically Consistent Stochastic Frontier Functions with a Simple Three-Step Procedure, unpublished, 2008)

C A U

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

Three-Step Estimation

- based on Koebel, Falk & Laisney: Imposing and Testing Curvature Conditions on a Box-Cox Cost Function, JBES, 2003
- **1** Unrestricted frontier estimation (FRONTIER, R:micEcon) $\ln y = \ln f(\mathbf{x}, \beta) - u + v, \ E[u] = \mathbf{z}'\delta$

 \hat{eta} unrestricted parameters $\hat{m{eta}}$, their covariance matrix $\hat{\Sigma}_{m{eta}}$

2 Minimum distance estimation (R:constrOptim|solve.QP|optim) $\hat{\beta}^{0} = \operatorname{argmin} \left[\left(\hat{\beta}^{0} - \hat{\beta} \right) \hat{\Sigma}_{\beta}^{-1} \left(\hat{\beta}^{0} - \hat{\beta} \right) \right] |n|m|Rdon|p2)$ s.t. $f(\mathbf{x}, \hat{\beta}^{0})$ satisfies theoretical conditions \Rightarrow restricted param. $\hat{\beta}^{0}$, "frontier" output $y^{\max} = f(\mathbf{x}, \hat{\beta}^{0})$ 3 Final frontier estimation (FRONTIER, R:micEcon) $\ln y = \alpha_{0} + \alpha_{1} \ln y^{\max} - u + v, E[u] = \mathbf{z}' \delta^{0}$

 $\Rightarrow y^{\max} = \hat{\alpha}_0 f(\mathbf{x}, \hat{\beta}^0)^{\hat{\alpha}_1}, E[e^{-u}], \hat{\delta}^0$

C A U Christian-Albrechts-Universität zu Kiel

> Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example

Empirical Example

- rice production in the Philippines
- translog production function
- 1 output (rice), 3 inputs (labour, land, fertiliser)
- 2 variables explaining efficiency (education, upland fields)
- 43 rice producers, 8 years
- unrestricted frontier estimation
 - \Rightarrow monotonicity violated at 39 observation
 - $\Rightarrow\,$ quasiconcavity violated at 4 observation
- minimum distance estimation
 - $\Rightarrow\,$ monotonicity and quasiconcavity fulfilled at all observation
- second frontier estimation
 - $\Rightarrow\,$ virtually no adjustment: $\alpha_{0}=$ 0.0005, $\alpha_{1}=$ 0.9999
 - $\Rightarrow \text{ efficiency estimates } \dots$

Frontier Functions Arne Henningsen Introduction

Theoretically Consistent

Stochastic

Stochastic Frontier Analysis

C A U

Theoretical Consistency

Restricted Estimation

Empirical Example

Efficiency Estimates

C A U

Summary and Outlook

Summary

- SFA is an important tool in production/firm analysis
- Theoretical consistency is important especially for frontier functions.
- Imposing restrictions by a three-step estimation procedure
 - $\Rightarrow\,$ relatively simple compared to other restricted frontier estimations
 - \Rightarrow can be done easily in R (using also FRONTIER)

Outlook

- Integrating FRONTIER into an R package
- Adding further functions for SFA (e.g. MCMC estimation)
- Coworkers and contributors are welcome!

Christian-Albrechts-Universität zu Kiel

CAU

Theoretically Consistent Stochastic Frontier Functions

Arne Henningsen

Introduction

Stochastic Frontier Analysis

Theoretical Consistency

Restricted Estimation

Empirical Example