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Finite mixture models
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Finite mixture models
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Finite mixture models

The finite mixture density is given by

h(y|x,w, ψ) =
K∑
k=1

πk(w,α)fk(y|x, θk)

=
K∑
k=1

πk(w,α)
D∏
d=1

fkd(yd|xd, θkd),

with

∀w :
K∑
k=1

πk(w,α) = 1 ∧ πk(w,α) > 0 ∀k.

The posterior probabilities are given by

τk(y|x, ψ) =
πk(w,α)fk(y|x, θk)
K∑
l=1

πl(w,α)fl(y|x, θl)
.



EM algorithm

• General method for ML estimation in a missing data setting
→ component membership
• Iterates between

E-step: determines the a-posteriori probabilities
M-step: maximizes the complete likelihood where the missing

component memberships are replaced
→ weighted ML problem of the component specific model and the
concomitant variable model

• Likelihood is increased in each step
→ converges to a local optimum if the likelihood is bounded
• Variants: additional step between E- and M-step

– Stochastic EM (SEM): assigns each observation to one compo-
nent by drawing from the multinomial distribution induced by the
a-posteriori probabilities

– Classification EM (CEM): assigns each observation to the
component with the maximum a-posteriori probability



FlexMix Design

• Primary goal is extensibility: ideal for trying out new mixture models
• No replacement of specialized mixture packages like mclust, but

complement
• Usage of S4 classes and methods
• Formula-based interface
• Multivariate responses:

– Combination of univariate families: assumption of indepen-
dence (given x), each response may have its own model formula,
i.e., a different set of regressors

– multivariate families: if family handles multivariate response
directly, then arbitrary multivariate response distributions are
possible



Fit function flexmix()

• flexmix() takes the following arguments:
formula: A symbolic description of the model to be fit. The general

form is y~x|g where y is the response, x the set of predictors and
g an optional grouping factor for repeated measurements.

data: An optional data frame containing the variables in the model.
k: Number of clusters (not needed if cluster is specified).
cluster: Either a matrix with k columns of initial cluster membership

probabilities for each observation; or a factor or integer vector with
the initial cluster assignments of observations.

model: Object of class "FLXM" or list of these objects.
concomitant: Object of class "FLXP".
control: Object of class "FLXcontrol" or a named list.
– repeated calls of flexmix() with stepFlexmix()

– returns an object of class "flexmix"



Controlling the EM algorithm

• "FLXcontrol": for the overall behaviour of the EM algorithm:
iter.max: Maximum number of iterations
minprior: Minimum prior probability for components
verbose: If larger than zero, then flexmix() gives status messages

each verbose iterations.
classify: One of “auto”, “weighted”, “CEM” (or “hard”), “SEM” (or

“random”).
For convenience flexmix() also accepts a named list of control
parameters with argument name completion, e.g.

flexmix(..., control=list(class="r"))



Variants of mixture models

Component specific models: FLXMxxx()

• Model-based clustering: FLXMCxxx()
– FLXMCmvnorm()

– FLXMCmvbinary()

– FLXMCmvpois()

– . . .
• Clusterwise regression: FLXMRxxx()

– FLXMRglm()

– FLXMRglmfix()

– FLXMRziglm()

– . . .

Concomitant variable models: FLXPxxx()

• FLXPconstant()

• FLXPmultinom()



Methods for "flexmix" objects

• show(), summary(): some information on the fitted model
• plot(): rootogram of posterior probabilities
• refit(): refits an estimated mixture model to obtain other additional

information, such as for example the variance-covariance matrix
• logLik(), BIC(), . . . : obtain log-likelihood and model fit criteria
• parameters(), priors(): obtain component specific or concomitant

variable model parameters and prior class probabilities/component
weights
• posteriors(), clusters(): obtain a-posteriori probabilities and

assignments to the maximum a-posteriori probability
• fitted(), predict(): fitted and predicted (component-specific)

values



Example: artificial data

• 200 observations from a mixture given by

h(y|x, ψ) =
1

2
Normal(yn|15 + 10x− x2,9)Poi(yp|e1+0.1x)+

+
1

2
Normal(yn|5x,9)Poi(yp|e2−0.2x)

where Normal(y|µ, σ2) is the Gaussian distribution and Poi(y|λ) the
Poisson distribution.



Example: artificial data
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Example: artificial data

> set.seed(1802)
> library("flexmix")
> data("NPreg")
> Model_n <- FLXMRglm(yn ~ . + I(x^2))
> Model_p <- FLXMRglm(yp ~ ., family = "poisson")
> m1 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),
+ control = list(verbose = 10))
Classification: weighted

10 Log-likelihood : -1044.7688
11 Log-likelihood : -1044.7678

converged
> m1
Call:
flexmix(formula = . ~ x, data = NPreg, k = 2, model = list(Model_n,

Model_p), control = list(verbose = 10))

Cluster sizes:
1 2

96 104

convergence after 11 iterations



Example: artificial data

> summary(m1)
Call:
flexmix(formula = . ~ x, data = NPreg, k = 2, model = list(Model_n,

Model_p), control = list(verbose = 10))

prior size post>0 ratio
Comp.1 0.493 96 139 0.691
Comp.2 0.507 104 137 0.759

’log Lik.’ -1044.768 (df=13)
AIC: 2115.536 BIC: 2158.414
> plot(m1)



Example: artificial data
Rootogram of posterior probabilities > 1e−04
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Example: artificial data

> m1_refit <- refit(m1)
> summary(m1_refit, which = "model", model = 1)
$Comp.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) 14.58965 1.24635 11.706 < 2.2e-16 ***
x 9.91572 0.55294 17.933 < 2.2e-16 ***
I(x^2) -0.97578 0.05201 -18.762 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.140549 0.961868 -0.1461 0.8838
x 4.732610 0.474428 9.9754 <2e-16 ***
I(x^2) 0.042722 0.046890 0.9111 0.3622
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> plot(m1_refit, bycluster = FALSE)



Example: artificial data
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Example: artificial data

> summary(m1_refit, which = "model", model = 2)
$Comp.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.037805 0.113005 9.1837 < 2.2e-16 ***
x 0.091034 0.017994 5.0592 4.21e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.939213 0.088046 22.0249 < 2.2e-16 ***
x -0.180959 0.020856 -8.6767 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> plot(m1_refit, model = 2, bycluster = FALSE)



Example: artificial data
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Example: artificial data

> Model_n2 <- FLXMRglmfix(yn ~ . + 0, nested = list(k = c(1, 1),
+ formula = c(~ 1 + I(x^2), ~ 0)))
> m2 <- flexmix(. ~ x, data = NPreg, cluster = posterior(m1),
+ model = list(Model_n2, Model_p))
> m2
Call:
flexmix(formula = . ~ x, data = NPreg, cluster = posterior(m1),

model = list(Model_n2, Model_p))

Cluster sizes:
1 2

96 104

convergence after 3 iterations

> c(BIC(m1), BIC(m2))
[1] 2158.414 2149.956



Example: artificial data
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Example: patent data

given in Wang, Cockburn and Puterman (1998)

• 70 observations from pharmaceutical and biomedical companies in
1976 taken from the National Bureau of Economic Research R&D
Masterfile
• Variables:

– number of patent applications
– R&D spending
– sales in millions

h(Patents | lgRD,RDS, ψ) =
S∑
s=1

πs(RDS, α)Poi(Patents |λs)

log(λs) = βs1 + lgRD · βs2



Example: patent data

●

● ● ●●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●
● ●

●
●

●
●

●
● ●

●● ●●

●

● ●
● ●

●

●

●● ●

●

●●

●

●

●

●
● ● ●

●

●●●
●

●

●●

●

●

●

●
●

●

●

●

●

−2 0 2 4

0
50

10
0

15
0

lgRD

P
at

en
ts



Example: patent data

> data("patent")
> Conc <- FLXPmultinom(~ RDS)
> (m_step <- stepFlexmix(Patents ~ lgRD, k = 2:5, nrep = 5,
+ concomitant = Conc, data = patent,
+ model = FLXMRglm(family = "poisson")))
2 : * * * * *
3 : * * * * *
4 : * * * * *
5 : * * * * *

Call:
stepFlexmix(Patents ~ lgRD, concomitant = Conc, data = patent,

model = FLXMRglm(family = "poisson"), k = 2:5, nrep = 5)

iter converged k k0 logLik AIC BIC ICL
2 26 TRUE 2 2 -218.4911 448.9822 462.4731 473.6855
3 29 TRUE 3 3 -197.6752 415.3504 437.8354 453.5647
4 39 TRUE 4 4 -193.8785 415.7571 447.2360 471.2140
5 37 TRUE 5 5 -192.6904 421.3808 461.8537 512.0378



Example: patent data

> (m1 <- getModel(m_step, "BIC"))
Call:
stepFlexmix(Patents ~ lgRD, concomitant = Conc, data = patent,

model = FLXMRglm(family = "poisson"), k = 3, nrep = 5)

Cluster sizes:
1 2 3

13 45 12

convergence after 29 iterations



Example: patent data

3

2 2 32

1

2

2

2 32

1

2

2 3

2

3
1

2 23 31 212
22 232 22

2

1 2 2 3

1

2

22 2

1

22

3

2

1

22 3 2

2

222
3

2

22

2

1

2

11

2

2

1

2

−2 0 2 4

0
50

10
0

15
0

lgRD

P
at

en
ts



Example: patent data

> m1_refit <- refit(m1)
> summary(m1_refit, which = "concomitant")
$Comp.2

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.10653 0.87491 3.5507 0.0003842 ***
RDS -40.99625 16.09568 -2.5470 0.0108642 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

$Comp.3
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.21385 0.52411 0.4080 0.6833
RDS -0.74566 1.01832 -0.7322 0.4640
> plot(m1_refit, which = "concomitant")



Example: patent data
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Summary

• FlexMix offers an easy and extensible way of EM-based estimation of
finite mixture models in R.
⇒ Users are able to write their own model drivers to fit new variants of
mixture models.
• FlexMix currently contains only interpreted code.
⇒ An efficient M-step is crucial to fit large models in reasonable time.
⇒ Popular models are re-implemented in C by Arijit Das as a “Google
Summer of Code 2008” project.

For more information see

http://cran.r-project.org/package=flexmix.

http://cran.r-project.org/package=flexmix
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