The "ChainLadder" package -Insurance claims reserving in R

Markus Gesmann Libero Ventures Ltd

The R User Conference 2008 Dortmund

August 12-14, Technische Universität Dortmund, Germany

Agenda

- Motivation / Background
- Current status of the "ChainLadder" package
- Example The Mack chain ladder method
- Next steps

Insurer's product is a promise of unknown costs

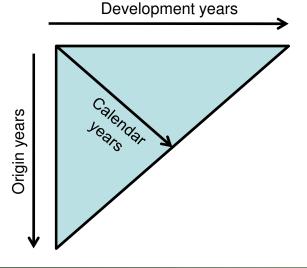
- Insurers sell the promise to pay for future claims occurring over an agreed period for an upfront received premium
- Unlike other industries insurers don't know the production cost of their product
- The estimated future claims have to be held in the reserves, one of the biggest liability items on an insurer's balance sheet

Reserving in insurance

- Reserves cover IBNR (Incurred But Not Reported) claims
- Reserves are usually estimated based on historical claims payment/reporting patterns
- The most popular method is called "chain ladder"
- In the past a point estimator for the reserves was sufficient
- New regulatory requirements (→ Solvency II) foster stochastic methods

Current situation

- Over recent years stochastic methods have been developed and published, but have been rarely used in practise
- Excel is still the standard tool in the industry, but is not an ideal environment for implementing those stochastic methods
- The number of R users in the insurance market has grown over recent years
- Idea: Use R to implement stochastic reserving methods, and CRAN to distribute them
- Use the RExcel Add-in as a front end for Excel


The ChainLadder package for R

- Started out of presentations given at the Institute of Actuaries on stochastic reserving
- Mack-, Munich-chain ladder implemented, Bootstrap and Log-normal model in experimental stage
- Spreadsheet shows how to use the functions within Excel using the RExcel Add-in
- Available from CRAN
- Home page: <u>http://code.google.com/p/chainladder/</u>
- Contributions most welcome!

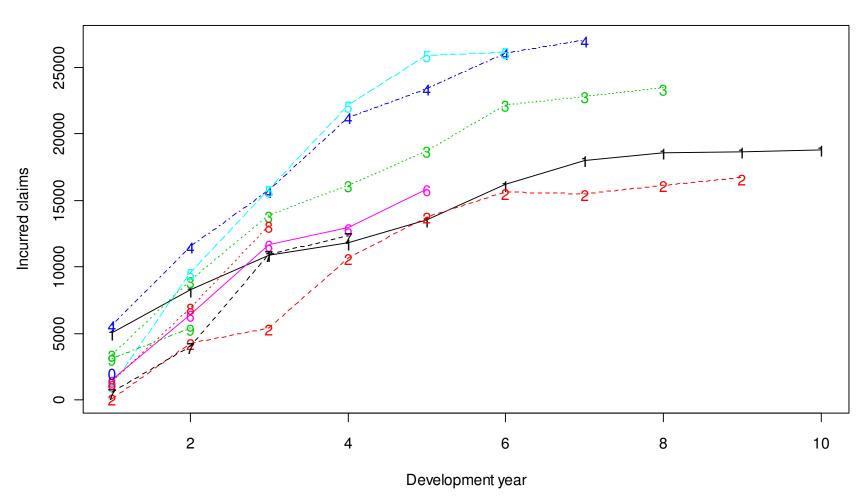
Example

- Usually an insurance portfolio is split into 'homogeneous" classes of business, e.g. motor, marine, property, etc.
- Policies are aggregated by class and looked at in a triangle view of cumulative or incremental paid and reported claims

Example of a development triangle

• Start with an aggregate cumulative reported claims development triangle C_{ik}

> library(ChainLadder)


dev

> RAA

C	IC V									
origin	1	2	3	4	5	6	7	8	9	10
1981	5012	8269	10907	11805	13539	16181	18009	18608	18662	18834
1982	106	4285	5396	10666	13782	15599	15496	16169	16704	NA
1983	3410	8992	13873	16141	18735	22214	22863	23466	NA	NA
1984	5655	11555	15766	21266	23425	26083	27067	NA	NA	NA
1985	1092	9565	15836	22169	25955	26180	NA	NA	NA	NA
1986	1513	6445	11702	12935	15852	NA	NA	NA	NA	NA
1987	557	4020	10946	12314	NA	NA	NA	NA	NA	NA
1988	1351	6947	13112	NA						
1989	3133	5395	NA							
1990	2063	NA								

Example of a development triangle

Cumulative incurred claims development by origin year

Lehman Brothers Company

- C_{ik} : cumulative loss amount of origin year 1,...,n
- Losses are know for $k \le n+1-i$
- Forecast \hat{C}_{ik} for k > n+1 with

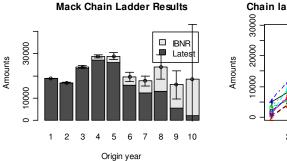
$$\hat{C}_{i,k+1} = \hat{C}_{ik}\hat{f}_k$$
 and
 $\hat{f}_k = rac{\sum_{j=1}^{n-k} C_{j,k+1}}{\sum_{j=1}^{n-k} C_{jk}}$

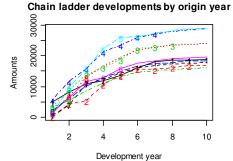
Chain ladder ratios – volume weighted average

The Mack chain ladder method

- The Mack chain ladder method [1,2] allows under certain assumptions to estimate the ultimate loss and the standard error around it
- It is straightforward in R to implement it, as the chain ladder method can be regarded as a linear regression through the origin [3]

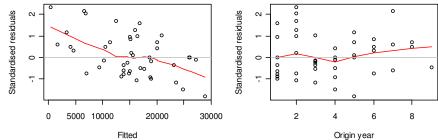
```
# Chain ladder ratio for development step 1
x <- Triangle[1:(n-1),1]; y <- Triangle[1:(n-1),2]
chainladder.model <- lm(y~x+0, weights=1/x)
coef(chainladder.model )
2.999359</pre>
```

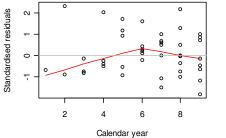


MackChainLadder - Example

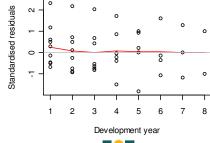

- > library(ChainLadder)
- > MCL <- MackChainLadder(RAA)</pre>

> plot(MCL)

Total Mack S.E.: 26,881


Total CoV:





> MCL												
Latest Dev.To	.Date Ult	imate	IBNR Mac	CoV								
1981 18,834	1.000	18,834	0	0	NaN							
1982 16,704	0.991	16,858	154	143	0.928							
1983 23,466	0.974	24,083	617	592	0.959							
1984 27,067	0.943	28,703	1,636	713	0.436							
1985 26,180	0.905	28,927	2,747	1,452	0.529							
1986 15,852	0.813	19,501	3,649	1,995	0.547							
1987 12,314	0.694	17,749	5,435	2,204	0.405							
1988 13,112	0.546	24,019	10,907	5,354	0.491							
1989 5,395	0.336	16,045	10,650	6,332	0.595							
1990 2,063	0.112	18,402	16,339	24,566	1.503							
	Totals:											
Sum of Latest:	160,987											
Sum of Ultimate:	213,122											
Sum of IBNR:	52,135											

52

Next steps

- Implement further stochastic reserving methods, see for example [4]
 - The bootstrap and log-normal methods are in an experimental stage
- Provide more diagnostic tools to verify the model assumptions
- Advertise R as the ideal language for knowledge transfer for stochastic reserving methods

- 1. Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates. Astin Bulletin. Vol. 23. No 2. 1993. pp 213-225.
- Thomas Mack. The standard error of chain ladder reserve estimates: Recursive calculation and inclusion of a tail factor. Astin Bulletin. Vol. 29. No 2. 1999. pp 361-366.
- 3. Zehnwirth and Barnett. Best estimates for reserves. Proceedings of the CAS, LXXXVI I(167), November 2000.
- 4. P.D.England and R.J.Verrall, Stochastic Claims Reserving in General Insurance, British Actuarial Journal, Vol. 8, pp.443-544, 2002.
- 5. Gerhard Quarg and Thomas Mack. Munich Chain Ladder. Blätter DGVFM 26, Munich, 2004.
- 6. Nigel De Silva. An Introduction to R: Examples for Actuaries. Actuarial Toolkit Working Party, version 0.1 edition, 2006. <u>http://toolkit.pbwiki.com/RToolkit</u>.

Contact

Markus Gesmann Libero Ventures Ltd One Broadgate London EC2M 2QS T: +44 (0)20 7826 9085 M: +44 (0)798 100 6152 E: markus.gesmann@libero.uk.com

About Libero

Libero is a Lehman Brothers company focused on principal transactions in P&C insurance.

Libero was created to offer

- Outperforming insurers transactions through which they can optimise their capital.
- Insurers and investors opportunities to invest in diversifying insurance instruments.

Libero can tailor propositions for insurers at different lifecycle stages.

- Start-ups.
- Steady state.
- Accelerated growth.
- M&A strategies (both offensive and defensive).

Libero combines deep insurance experience with Lehman Brothers' balance sheet and structuring expertise to offer strong executional capability.

