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A clean example
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The problem of separation
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Separation is no joke!

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960 1968

coef.est coef.se coef.est coef.se

(Intercept) -0.14 0.23 (Intercept) 0.47 0.24

female 0.24 0.14 female -0.01 0.15

black -1.03 0.36 black -3.64 0.59

income 0.03 0.06 income -0.03 0.07

1964 1972

coef.est coef.se coef.est coef.se

(Intercept) -1.15 0.22 (Intercept) 0.67 0.18

female -0.09 0.14 female -0.25 0.12

black -16.83 420.40 black -2.63 0.27

income 0.19 0.06 income 0.09 0.05

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior
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bayesglm()

I Bayesian logistic regression

I In the arm (Applied Regression and Multilevel modeling)
package

I Replaces glm(), estimates are more numerically and
computationally stable

I Student-t prior distributions for regression coefs

I Use EM-like algorithm

I We went inside glm.fit to augment the iteratively weighted
least squares step

I Default choices for tuning parameters (we’ll get back to this!)

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior
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Regularization in action!
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What else is out there?

I glm (maximum likelihood): fails under separation, gives noisy
answers for sparse data

I Augment with prior “successes” and “failures”: doesn’t work
well for multiple predictors

I brlr (Jeffreys-like prior distribution): computationally
unstable

I brglm (improvement on brlr): doesn’t do enough smoothing

I BBR (Laplace prior distribution): OK, not quite as good as
bayesglm

I Non-Bayesian machine learning algorithms: understate
uncertainty in predictions

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior
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Information in prior distributions

I Informative prior dist
I A full generative model for the data

I Noninformative prior dist
I Let the data speak
I Goal: valid inference for any θ

I Weakly informative prior dist
I Purposely include less information than we actually have
I Goal: regularization, stabilization
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Weakly informative priors for
logistic regression coefficients

I Separation in logistic regression
I Some prior info: logistic regression coefs are almost always

between −5 and 5:
I 5 on the logit scale takes you from 0.01 to 0.50

or from 0.50 to 0.99
I Smoking and lung cancer

I Independent Cauchy prior dists with center 0 and scale 2.5

I Rescale each predictor to have mean 0 and sd 1
2

I Fast implementation using EM; easy adaptation of glm

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior
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Prior distributions
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Another example

Dose #deaths/#animals

−0.86 0/5
−0.30 1/5
−0.05 3/5

0.73 5/5

I Slope of a logistic regression of Pr(death) on dose:
I Maximum likelihood est is 7.8± 4.9
I With weakly-informative prior: Bayes est is 4.4± 1.9

I Which is truly conservative?

I The sociology of shrinkage

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior
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Maximum likelihood and Bayesian estimates
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Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Conservatism of Bayesian inference

I Problems with maximum likelihood when data show
separation:

I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Prior information
Who’s the real conservative?
Evaluation using a corpus of datasets
Other generalized linear models

Which one is conservative?
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I Set up models so prior expectation of correlations is 0
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I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization

Gelman, Jakulin, Pittau, Su Bayesian generalized linear models and an appropriate default prior



Logistic regression
Weakly informative priors

Conclusions

Conclusions
Extra stuff

Weakly informative priors for
population variation in a physiological model

I Pharamcokinetic parameters such as the “Michaelis-Menten
coefficient”

I Wide uncertainty: prior guess for θ is 15 with a factor of 100
of uncertainty, log θ ∼ N(log(15), log(10)2)

I Population model: data on several people j ,
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