RiDMC: an R package for the numerical analysis of dynamical systems

Antonio, Fabio Di Narzo ${ }^{1}$ Marji Lines ${ }^{2}$

${ }^{1}$ Università degli studi di Bologna
${ }^{2}$ Università degli studi di Udine
UseR! 2008, Dortmund 12-08-2008

Dynamical Systems

- Dynamical systems theory is an interdisciplinary field, with major contributions coming from mathematics and physics but also many other fields like population studies and meteorology
- A dynamical system is a mathematical model which formalizes the 'rules' describing the time dependence of a point's position in its ambient space
- The point symbolizes a state of the system, and is usually represented as a d-variate real vector
- Examples of dynamical systems include the description of the swinging of a clock pendulum, the flow of water in a pipe, the number of fish each spring in a lake, the daily rainfall in a city, etc.

RiDMC: the story

- iDMC (the interactive Dynamical Model Calculator) is a stand-alone Java application -with GUI- from which the C library idmclib originated as a spin-off (http://idmc.googlecode.com)
- idmclib is a standard-C library which relies on the LUA library for model code interpretation and on the Gnu Scientific Library (GSL) for computational tasks and random number generation. The idmclib is small, self-sufficient, and documented. License: GPL-v2 (http://idmclib.googlecode.com)
- RiDMC is a self-contained R package which internally uses the idmclib C library for core numerical analyses, and exploits R power for delivering a more complete, interactive and flexible environment to the final user for the numerical analysis of dynamical systems

RiDMC workflow

What is the typical workflow with RiDMC?

- write down the model in the LUA language, save it in a plain text file
- load the model as an R object
- perform analyses by using one or more model methods
- plot resulting objects

Writing models

- Models are specified in the interpreted LUA language
- The language is very easy to learn, and many models are already given as examples

Hénon map

$$
\begin{aligned}
& \text { name }=` \text { Henon` } \\
& \text { type }=` D^{`} \\
& \text { parameters }=\left\{` a^{`}, ` b^{`}\right\} \\
& \text { variables }=\left\{` x^{`}, ` y^{`}\right\} \\
& \text { function } f(a, b, x, y) \\
& x 1=a-x \wedge 2+b * y \\
& y 1=x \\
& \text { return } x 1, y 1 \\
& \text { end }
\end{aligned}
$$

Analyzing a model

- Package design is object oriented, and all major analysis functions have been written as (S3) Model methods
- To date, the following methods are available:

function	description
Trajectory, TrajectoryList	Model trajectories
Basin, BasinMulti	Basins of attraction
Bifurcation	Bifurcation diagram
LyapunovExponents	Lyapunov exponents
cycles	Periodic Cycles

- Each method returns an object which can be directly plotted by the usual plot method

Trajectories

Trajectories

- A first, basic explorative analysis of a dynamical system involves the visual inspection of model trajectories
- Trajectories can be plotted vs time axis or represented in the system state space, where time dimension is lost, but other model features can be appreciated
- With RiDMC one can easily compute and plot trajectories for both discrete and continuous time dynamical systems

Trajectories (II)

> m <- Model('henon.lua')
> tr <- Trajectory(m, par, var, time, transient)
> tr
= iDMC model discrete trajectory =
model: Henon
parameter values: 1.420 .3
starting point: 00
transient length: 10000
time span: 1000

Trajectories (III)

plot(tr)

Attractors

Attractors

- A key aspect of a dynamical system is its limit behaviour, i.e. the system's state as time tends to infinity
- As we have already seen, this can be approximated by using the Trajectory method and exploiting the transient option
- Even more useful in this respect can be the TrajectoryList method, which shows multiple trajectories in the same plot, by allowing for variations in starting points and/or parameter values

Attractors

```
\(>\) par <- c \((\mathrm{a}=1.4, \mathrm{~b}=0.3)\)
> var <- list \((c(x=-1, y=-1), c(x=1, y=1))\)
> trL <- TrajectoryList(m, n=20, par, var, time=50)
> plot (trL)
```


Basins of attraction

> bs <- Basin(m, par, xlim, ylim, transient, iterations)

Henon

Sensitive Dependence on Initial Conditions

Lyapunov exponents

- One of the more interesting possibilities of nonlinear systems is sensitive dependence on initial conditions
- The Lyapunov Exponent (LE) measures the average rate of divergence in time of two nearby trajectories:

$$
\left|\delta \mathbf{x}_{t}\right| \simeq e^{\lambda t}\left|\delta \mathbf{x}_{0}\right|
$$

- Positive values of λ indicate SDIC and suggest chaotic attractors
- Computing the value of λ can be very hard to do analytically, but numerical approximations can be obtained with RiDMC

Sensitive Dependence on Initial Conditions
$>\operatorname{par}<-c(\mathrm{a}=1.4, \mathrm{~b}=0.3)$
$>x 0<-c(x=0, y=0)$
$>\operatorname{var}<-\operatorname{list}(x 0, x 0+0.001)$
> trL <- TrajectoryList(m, $n=2$, par, var, time $=30$)

Lyapunov exponents (II)
> ly <- LyapunovExponents(m, par, var, time, par.min, par.max)
> ly
=iDMC Lyapunov exponents diagram=
Model: Henon
Starting point: $\mathrm{x}=0.5$, $\mathrm{y}=1$
Parameter values: $\mathrm{a}=1.4, \mathrm{~b}=0.3$
Varying par.: a
Varying par. range: [0.3, 1.4]
MLE range: [- 0.5975, 0.4279]

Lyapunov exponents (III)

Note

RiDMC isn't just for toy models...

Current status

- The idmclib C API is quite stable. Currently working on documentation and distribution system
- RiDMC core computing functions are stable too
- The plotting functions (grid-based) may change in the future
- Extract raw data and write your custom plotting functions if you want forward-compatibility of your code!

Perspectives

- fix bugs
- stabilize plotting functions
- add more analysis routines

The end.

