
igraph – a package for network analysis

Gábor Csárdi
Gabor.Csardi@unil.ch

Department of Medical Genetics,

University of Lausanne, Lausanne, Switzerland



Outline

1. Why another graph package?

2. igraph architecture, data model and data representation

3. Manipulating graphs

4. Features and their time complexity

igraph – a package for network analysis 2



Why another graph package?

• graph is slow. RBGL is slow, too.

?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801



Why another graph package?

• graph is slow. RBGL is slow, too.

?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801

5 > system.time(RBGL::transitivity(ba2))

6 user system elapsed

7 7.517 0.000 7.567



Why another graph package?

• graph is slow. RBGL is slow, too.

?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801

5 > system.time(RBGL::transitivity(ba2))

6 user system elapsed

7 7.517 0.000 7.567

8 > summary(ba) # igraph

9 Vertices: 1e+05

10 Edges: 199801

11 Directed: FALSE

12 No graph attributes.

13 No vertex attributes.

14 No edge attributes.



Why another graph package?

• graph is slow. RBGL is slow, too.

?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801

5 > system.time(RBGL::transitivity(ba2))

6 user system elapsed

7 7.517 0.000 7.567

8 > summary(ba) # igraph

9 Vertices: 1e+05

10 Edges: 199801

11 Directed: FALSE

12 No graph attributes.

13 No vertex attributes.

14 No edge attributes.

15 > system.time(igraph::transitivity(ba))

16 user system elapsed

17 0.328 0.000 0.335

igraph – a package for network analysis 3



Why another graph package?

• sna is slow. network is slow, too.

1 > net2 # SNA & network

2 Network attributes:

3 vertices = 1e+05

4 directed = TRUE

5 hyper = FALSE

6 loops = FALSE

7 multiple = FALSE

8 bipartite = FALSE

9 total edges= 199801

10 missing edges= 0

11 non-missing edges= 199801

12 ...



Why another graph package?

• sna is slow. network is slow, too.

1 > net2 # SNA & network

2 Network attributes:

3 vertices = 1e+05

4 directed = TRUE

5 hyper = FALSE

6 loops = FALSE

7 multiple = FALSE

8 bipartite = FALSE

9 total edges= 199801

10 missing edges= 0

11 non-missing edges= 199801

12 ...

13 > gtrans(net2)

14 Error in matrix(0, nr = network.size(x), nc = network.size(x)) :

15 too many elements specified

igraph – a package for network analysis 4



Why another graph package?

• graph is slow. RBGL is slow, too.

• sna is slow. network is slow, too.

• A generic solution was needed, i.e. a common C layer, that can be interfaced from
C/C++, R, Python, etc.



Why another graph package?

• graph is slow. RBGL is slow, too.

• sna is slow. network is slow, too.

• A generic solution was needed, i.e. a common C layer, that can be interfaced from
C/C++, R, Python, etc.

graph library core

GNU R Python Ruby 

igraph – a package for network analysis 5



The igraph architecture

API
igraph_t

API

utility types

igraph library

R glue layer
R functions

converter

igraph – a package for network analysis 6



Dependencies

• Standard C/C++ libraries.



Dependencies

• Standard C/C++ libraries.

• stats package, this is part of base.



Dependencies

• Standard C/C++ libraries.

• stats package, this is part of base.

• Optional: libxml2 library, for reading
GraphML files (included in Windows builds).



Dependencies

• Standard C/C++ libraries.

• stats package, this is part of base.

• Optional: libxml2 library, for reading
GraphML files (included in Windows builds).

• Optional: GMP library, graph automorphisms
(not included in Windows builds).



Dependencies

• Standard C/C++ libraries.

• stats package, this is part of base.

• Optional: libxml2 library, for reading
GraphML files (included in Windows builds).

• Optional: GMP library, graph automorphisms
(not included in Windows builds).

• Suggested packages: stats4, rgl, tcltk, RSQLite,
digest, graph, Matrix.

igraph – a package for network analysis 7



The igraph data model, what cannot be represented

“Mixed” graphs, with undirected and directed edges.
You can “emulate” them via graph attributes.



The igraph data model, what cannot be represented

“Mixed” graphs, with undirected and directed edges.
You can “emulate” them via graph attributes.

Hypergraphs. Perhaps see the hypergraph package.



The igraph data model, what cannot be represented

“Mixed” graphs, with undirected and directed edges.
You can “emulate” them via graph attributes.

Hypergraphs. Perhaps see the hypergraph package.

No direct support for bipartite (two-mode) graphs.
It is possible to handle them via graph attributes.

igraph – a package for network analysis 8



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

igraph – a package for network analysis 9



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

igraph – a package for network analysis 10



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

igraph – a package for network analysis 11



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

igraph – a package for network analysis 12



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

X

A

B

C

D

E

F

G

H

I

J

igraph – a package for network analysis 13



Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.

X

A

B

C

D

E

F

G

H

I

J

X

A

B

C

D

E

F

G

H

I

J

igraph – a package for network analysis 14



Creating graphs, via vertex ids

1 > g <- graph( c(0,1, 1,2, 2,3, 3,4), n=6, directed=TRUE )

2 > g

3 Vertices: 6

4 Edges: 4

5 Directed: TRUE

6 Edges:

7

8 [0] 0 -> 1

9 [1] 1 -> 2

10 [2] 2 -> 3

11 [3] 3 -> 4

igraph – a package for network analysis 15



Creating graphs, via vertex ids

1 > el <- cbind(0:9, 9:0)

2 > g <- graph( t(el), directed=TRUE)

3 > g

4 Vertices: 10

5 Edges: 10

6 Directed: TRUE

7 Edges:

8

9 [0] 0 -> 9

10 [1] 1 -> 8

11 [2] 2 -> 7

12 [3] 3 -> 6

13 [4] 4 -> 5

14 [5] 5 -> 4

15 [6] 6 -> 3

16 [7] 7 -> 2

17 [8] 8 -> 1

18 [9] 9 -> 0

igraph – a package for network analysis 16



Creating graphs, graph.formula

1 # A simple undirected graph

2 > g <- graph.formula( Alice-Bob-Cecil-Alice,

3 Daniel-Cecil-Eugene, Cecil-Gordon )

4 > g

5 Vertices: 6

6 Edges: 6

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Bob -- Cecil

12 [2] Alice -- Cecil

13 [3] Cecil -- Daniel

14 [4] Cecil -- Eugene

15 [5] Cecil -- Gordon

igraph – a package for network analysis 17



Creating graphs, graph.formula

1 # Another undirected graph, ":" notation

2 > g2 <- graph.formula( Alice-Bob:Cecil:Daniel,

3 Cecil:Daniel-Eugene:Gordon )

4 > g2

5 Vertices: 6

6 Edges: 7

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Alice -- Cecil

12 [2] Alice -- Daniel

13 [3] Cecil -- Eugene

14 [4] Cecil -- Gordon

15 [5] Daniel -- Eugene

16 [6] Daniel -- Gordon

igraph – a package for network analysis 18



Creating graphs, graph.formula

1 # A directed graph

2 > g3 <- graph.formula( Alice +-+ Bob --+ Cecil

3 +-- Daniel, Eugene --+ Gordon:Helen )

4 > g3

5 Vertices: 7

6 Edges: 6

7 Directed: TRUE

8 Edges:

9

10 [0] Bob -> Alice

11 [1] Alice -> Bob

12 [2] Bob -> Cecil

13 [3] Daniel -> Cecil

14 [4] Eugene -> Gordon

15 [5] Eugene -> Helen

igraph – a package for network analysis 19



Creating graphs, graph.formula

1 # A graph with isolate vertices

2 > g4 <- graph.formula( Alice -- Bob -- Daniel,

3 Cecil:Gordon, Helen )

4 > g4

5 Vertices: 6

6 Edges: 2

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Bob -- Daniel

12 > V(g4)

13 Vertex sequence:

14 [1] "Alice" "Bob" "Daniel"

15 [4] "Cecil" "Gordon" "Helen"

igraph – a package for network analysis 20



Creating graphs, graph.formula

1 # "Arrows" can be arbitrarily long

2 > g5 <- graph.formula( Alice +---------+ Bob )

3 > g5

4 Vertices: 2

5 Edges: 2

6 Directed: TRUE

7 Edges:

8

9 [0] Bob -> Alice

10 [1] Alice -> Bob

igraph – a package for network analysis 21



Creating graphs, graph.famous

1 > graph.famous("Cubical")

2 Vertices: 8

3 Edges: 12

4 Directed: FALSE

5 Edges:

6

7 [0] 0 -- 1

8 [1] 1 -- 2

9 [2] 2 -- 3

10 [3] 0 -- 3

11 [4] 4 -- 5

12 [5] 5 -- 6

13 [6] 6 -- 7

14 [7] 4 -- 7

15 [8] 0 -- 4

16 [9] 1 -- 5

17 [10] 2 -- 6

18 [11] 3 -- 7

igraph – a package for network analysis 22



Creating graphs, graph.data.frame

1 > traits <- read.csv("traits.csv", head=F)

2 > traits

3 V1 V2 V3

4 1 Alice Anderson 48 F

5 2 Bob Bradford 33 M

6 3 Cecil Connor 45 F

7 4 David Daugher 34 M

8 5 Esmeralda Escobar 21 F

9 6 Frank Finley 36 M

10 7 Gabi Garbo 44 F

11 8 Helen Hunt 40 F

12 9 Iris Irving 25 F

13 10 James Jones 47 M

14 > colnames(traits) <- c("name", "age", "gender")

15 > traits[,1] <- sapply(strsplit(as.character(traits[,1]), " "), "[", 1)

igraph – a package for network analysis 23



Creating graphs, graph.data.frame

1 > relations <- read.csv("relations.csv", head=F)

2 > relations

3 V1 V2 V3 V4 V5

4 1 Bob Alice N 4 4

5 2 Cecil Bob N 5 5

6 3 Cecil Alice Y 5 5

7 4 David Alice N 3 4

8 5 David Bob N 4 2

9 6 Esmeralda Alice Y 4 3

10 7 Frank Alice N 3 2

11 8 Frank Esmeralda N 4 4

12 9 Gabi Bob Y 5 5

13 10 Gabi Alice N 3 0

14 11 Helen Alice N 4 1

15 12 Iris Cecil N 0 1

16 ...

17 > colnames(relations) <- c("from", "to", "same.room",

18 "friendship", "advice")

igraph – a package for network analysis 24



Creating graphs, graph.data.frame

1 > orgnet <- graph.data.frame(relations, vertices=traits)

2 > summary(orgnet)

3 Vertices: 10

4 Edges: 34

5 Directed: TRUE

6 No graph attributes.

7 Vertex attributes: name, age, gender.

8 Edge attributes: same.room, friendship, advice.

igraph – a package for network analysis 25



Creating graphs, graph.data.frame

1 > plot(orgnet, layout=layout.kamada.kawai, vertex.label=V(orgnet)$name,

2 vertex.shape="rectangle", vertex.size=20, asp=FALSE)

igraph – a package for network analysis 26



Creating graphs, random graphs

1 > er <- erdos.renyi.game(100, 100, type="gnm")

2 > plot(er, vertex.size=5, vertex.label=NA, asp=FALSE, vertex.shape="square",

3 layout=layout.fruchterman.reingold, edge.color="black")

igraph – a package for network analysis 27



Creating graphs, random graphs

1 > ba <- ba.game(100, power=1, m=1)

2 > plot(ba, vertex.size=3, vertex.label=NA, asp=FALSE, vertex.shape="square",

3 layout=layout.fruchterman.reingold, edge.color="black",

4 edge.arrow.size=0.5)

igraph – a package for network analysis 28



Meta data: graph/vertex/edge attributes

• Assigning attributes: set/get.graph/vertex/edge.attribute.



Meta data: graph/vertex/edge attributes

• Assigning attributes: set/get.graph/vertex/edge.attribute.

• V(g) and E(g).



Meta data: graph/vertex/edge attributes

• Assigning attributes: set/get.graph/vertex/edge.attribute.

• V(g) and E(g).

• Easy access of attributes:

1 > g <- erdos.renyi.game(30, 2/30)

2 > V(g)$color <- sample( c("red", "black"),

3 vcount(g), rep=TRUE)

4 > V(g)$color

5 [1] "red" "black" "red" "black" "black" "black" "red" "red" "red"

6 [10] "black" "black" "black" "red" "red" "black" "red" "black" "black"

7 [19] "red" "red" "black" "black" "red" "black" "black" "red" "black"

8 [28] "black" "black" "red"

9 > E(g)$color <- "grey"

igraph – a package for network analysis 29



Vertex/edge selection with attributes

1 > red <- V(g)[ color == "red" ]

2 > bl <- V(g)[ color == "black" ]

3 > E(g)[ red %--% red ]$color <- "red"

4 > E(g)[ bl %--% bl ]$color <- "black"

5 > plot(g, vertex.size=5,

6 layout=layout.fruchterman.reingold,

7 vertex.label=NA)

igraph – a package for network analysis 30



Visualizing graphs

• Three functions with (almost) identical interfaces.



Visualizing graphs

• Three functions with (almost) identical interfaces.

• plot Uses traditional R graphics, non-interactive, 2d. Publication quality plots in all
formats R supports.

1 > g <- barabasi.game(100, m=1)

2 > igraph.par("plot.layout",

3 layout.fruchterman.reingold)

4 > plot(g, vertex.size=4, vertex.label=NA,

5 edge.arrow.size=0.7,

6 edge.color="black",

7 vertex.color="red", frame=TRUE)

igraph – a package for network analysis 31



Visualizing graphs

tkplot Uses Tcl/Tk via the tcltk package, interactive, 2d.

1 > id <- tkplot(g, vertex.size=4,

2 vertex.label=NA,

3 edge.color="black",

4 edge.arrow.size=0.7,

5 vertex.color="red")

6 > coords <- tkplot.getcoords(id)

igraph – a package for network analysis 32



Visualizing graphs

rglplot Needs the rgl package.

1 > co <- layout.kamada.kawai(g, dim=3)

2 > rglplot(g, vertex.size=5,

3 vertex.label=NA,

4 layout=co)

igraph – a package for network analysis 33



Working with a somewhat bigger graph

1 > vertices <- read.csv("http://cneurocvs.rmki.kfki.hu/igraph/judicial.csv")

2 > edges <- read.table("http://cneurocvs.rmki.kfki.hu/igraph/allcites.txt")

3 > jg <- graph.data.frame(edges, vertices=vertices, dir=TRUE)

4 > summary(jg)

5 Vertices: 30288

6 Edges: 216738

7 Directed: TRUE

8 No graph attributes.

9 Vertex attributes: name, usid, parties, year, overruled, overruling,

10 oxford, liihc, indeg, outdeg, hub, hubrank, auth, authrank, between, incent.

11 No edge attributes.

igraph – a package for network analysis 34



Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE



Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE

3

4 > no.clusters(jg) # How many components?

5 [1] 4881



Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE

3

4 > no.clusters(jg) # How many components?

5 [1] 4881

6

7 > table(clusters(jg)$csize) # How big are these?

8

9 1 3 4 25389

10 4871 8 1 1



Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE

3

4 > no.clusters(jg) # How many components?

5 [1] 4881

6

7 > table(clusters(jg)$csize) # How big are these?

8

9 1 3 4 25389

10 4871 8 1 1

11

12 > max(degree(jg, mode="in")) # Vertex degree

13 [1] 248

14 > max(degree(jg, mode="out"))

15 [1] 195

16 > max(degree(jg, mode="all"))

17 [1] 313

igraph – a package for network analysis 35



Working with a somewhat bigger graph

1 # In-degree distribution

2 > plot(degree.distribution(jg, mode="in"), log="xy")

igraph – a package for network analysis 36



Working with a somewhat bigger graph

1 # Out-degree distribution

2 plot(degree.distribution(jg, mode="out"), log="xy")

igraph – a package for network analysis 37



Working with a somewhat bigger graph

1 # Taking the largest component

2 > cl <- clusters(jg)

3 > jg2 <- subgraph(jg, which(cl$membership == which.max(cl$csize)-1)-1)

4 > summary(jg2)

5 Vertices: 25389

6 Edges: 216718

7 Directed: TRUE

8 No graph attributes.

9 Vertex attributes: name, usid, parties, year, overruled, overruling,

10 oxford, liihc, indeg, outdeg, hub, hubrank, auth, authrank,

11 between, incent.

12 No edge attributes.

igraph – a package for network analysis 38



Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180



Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180

3

4 > transitivity(jg2) # Transitivity

5 [1] 0.1260031



Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180

3

4 > transitivity(jg2) # Transitivity

5 [1] 0.1260031

6

7 # Transitivity of a random graph of the same size

8 > g <- erdos.renyi.game(vcount(jg2), ecount(jg2), type="gnm")

9 > transitivity(g)

10 [1] 0.00064649



Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180

3

4 > transitivity(jg2) # Transitivity

5 [1] 0.1260031

6

7 # Transitivity of a random graph of the same size

8 > g <- erdos.renyi.game(vcount(jg2), ecount(jg2), type="gnm")

9 > transitivity(g)

10 [1] 0.00064649

11

12 # Transitivity of a random graph with the same degrees

13 > g2 <- degree.sequence.game(degree(jg2,mode="all"), method="vl")

14 > transitivity(g2)

15 [1] 0.004107072

igraph – a package for network analysis 39



Community structure detection

1 > fc <- fastgreedy.community(simplify(as.undirected(jg2)))

2 > memb <- community.to.membership(jg2,

3 fc$merges,

4 which.max(fc$modularity))

5 > lay <- layout.drl(jg2)

6 > jg3 <- graph.empty(n=vcount(jg2))

7 > colbar <- rainbow(5)

8 > col <- colbar[memb$membership+1]

9 > col[is.na(col)] <- "grey"

10 > plot(jg3, layout=lay, vertex.size=1,

11 vertex.label=NA, asp=FALSE,

12 vertex.color=col,

13 vertex.frame.color=col)

igraph – a package for network analysis 40



Functionality, what can be calculated?

Fast (millions) creating graphs (most of the time) • structural modification
(add/delete edges/vertices) • subgraph • simplify •
graph.decompose • degree • clusters • graph.density • is.simple,
is.loop, is.multiple • articulation points and biconnected components
• ARPACK stuff: page.rank, hub.score, authority.score, eigenvector
centrality • transitivity • Burt’s constraint • dyad & triad census,
graph motifs • k-cores • MST • reciprocity • modularity •
closeness and (edge) betweenness estimation • shortest paths from
one source • generating Gn,p and Gn,m graphs • generating PA
graphs with various PA exponents • topological sort

Slow (10000) closeness • diameter • betweenness • all-pairs shortest paths,
average path length • most layout generators •

Very slow (100) cliques • cohesive blocks • edge/vertex connectivity • maximum
flows and minimum cuts • power centrality • alpha centrality •
(sub)graph isomorphism

igraph – a package for network analysis 41



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.

• Visone. Use GraphML format.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.

• Visone. Use GraphML format.

• Cytoscape. Use GML format.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.

• Visone. Use GraphML format.

• Cytoscape. Use GML format.

• GraphViz. igraph can write .dot files.



Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.

• Visone. Use GraphML format.

• Cytoscape. Use GML format.

• GraphViz. igraph can write .dot files.

• In general. The GraphML and GML file formats are fully supported, many programs can
read/write these.

igraph – a package for network analysis 42



Acknowledgements

Tamás Nepusz

Peter McMahan, the BLISS, Walktrap, Spinglass, DrL projects

All the people who contributed code, sent bug reports, suggestions

The R project

igraph – a package for network analysis 43


