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?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801

5 > system.time(RBGL::transitivity(ba2))

6 user system elapsed

7 7.517 0.000 7.567

8 > summary(ba) # igraph
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12 No graph attributes.

13 No vertex attributes.

14 No edge attributes.



Why another graph package?

• graph is slow. RBGL is slow, too.

?

1 > ba2 # graph & RBGL

2 A graphNEL graph with undirected edges

3 Number of Nodes = 100000

4 Number of Edges = 199801

5 > system.time(RBGL::transitivity(ba2))

6 user system elapsed

7 7.517 0.000 7.567

8 > summary(ba) # igraph

9 Vertices: 1e+05

10 Edges: 199801

11 Directed: FALSE

12 No graph attributes.

13 No vertex attributes.

14 No edge attributes.

15 > system.time(igraph::transitivity(ba))

16 user system elapsed

17 0.328 0.000 0.335
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Why another graph package?

• sna is slow. network is slow, too.

1 > net2 # SNA & network

2 Network attributes:

3 vertices = 1e+05

4 directed = TRUE

5 hyper = FALSE

6 loops = FALSE

7 multiple = FALSE

8 bipartite = FALSE

9 total edges= 199801

10 missing edges= 0

11 non-missing edges= 199801

12 ...



Why another graph package?

• sna is slow. network is slow, too.

1 > net2 # SNA & network

2 Network attributes:

3 vertices = 1e+05

4 directed = TRUE

5 hyper = FALSE

6 loops = FALSE

7 multiple = FALSE

8 bipartite = FALSE

9 total edges= 199801

10 missing edges= 0

11 non-missing edges= 199801

12 ...

13 > gtrans(net2)

14 Error in matrix(0, nr = network.size(x), nc = network.size(x)) :

15 too many elements specified
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Why another graph package?

• graph is slow. RBGL is slow, too.

• sna is slow. network is slow, too.

• A generic solution was needed, i.e. a common C layer, that can be interfaced from
C/C++, R, Python, etc.



Why another graph package?

• graph is slow. RBGL is slow, too.

• sna is slow. network is slow, too.

• A generic solution was needed, i.e. a common C layer, that can be interfaced from
C/C++, R, Python, etc.

graph library core

GNU R Python Ruby 
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The igraph architecture

API
igraph_t

API

utility types

igraph library

R glue layer
R functions

converter
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Dependencies

• Standard C/C++ libraries.

• stats package, this is part of base.

• Optional: libxml2 library, for reading
GraphML files (included in Windows builds).

• Optional: GMP library, graph automorphisms
(not included in Windows builds).

• Suggested packages: stats4, rgl, tcltk, RSQLite,
digest, graph, Matrix.
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The igraph data model, what cannot be represented

“Mixed” graphs, with undirected and directed edges.
You can “emulate” them via graph attributes.
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The igraph data model, what cannot be represented

“Mixed” graphs, with undirected and directed edges.
You can “emulate” them via graph attributes.

Hypergraphs. Perhaps see the hypergraph package.

No direct support for bipartite (two-mode) graphs.
It is possible to handle them via graph attributes.
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Graph representation, sparse graphs

Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.
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Graph representation, sparse graphs
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Creating graphs, via vertex ids

1 > g <- graph( c(0,1, 1,2, 2,3, 3,4), n=6, directed=TRUE )

2 > g

3 Vertices: 6

4 Edges: 4

5 Directed: TRUE

6 Edges:

7

8 [0] 0 -> 1

9 [1] 1 -> 2

10 [2] 2 -> 3

11 [3] 3 -> 4
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Creating graphs, via vertex ids

1 > el <- cbind(0:9, 9:0)

2 > g <- graph( t(el), directed=TRUE)

3 > g

4 Vertices: 10

5 Edges: 10

6 Directed: TRUE

7 Edges:

8

9 [0] 0 -> 9

10 [1] 1 -> 8

11 [2] 2 -> 7

12 [3] 3 -> 6

13 [4] 4 -> 5

14 [5] 5 -> 4

15 [6] 6 -> 3

16 [7] 7 -> 2

17 [8] 8 -> 1

18 [9] 9 -> 0
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Creating graphs, graph.formula

1 # A simple undirected graph

2 > g <- graph.formula( Alice-Bob-Cecil-Alice,

3 Daniel-Cecil-Eugene, Cecil-Gordon )

4 > g

5 Vertices: 6

6 Edges: 6

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Bob -- Cecil

12 [2] Alice -- Cecil

13 [3] Cecil -- Daniel

14 [4] Cecil -- Eugene

15 [5] Cecil -- Gordon
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Creating graphs, graph.formula

1 # Another undirected graph, ":" notation

2 > g2 <- graph.formula( Alice-Bob:Cecil:Daniel,

3 Cecil:Daniel-Eugene:Gordon )

4 > g2

5 Vertices: 6

6 Edges: 7

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Alice -- Cecil

12 [2] Alice -- Daniel

13 [3] Cecil -- Eugene

14 [4] Cecil -- Gordon

15 [5] Daniel -- Eugene

16 [6] Daniel -- Gordon
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Creating graphs, graph.formula

1 # A directed graph

2 > g3 <- graph.formula( Alice +-+ Bob --+ Cecil

3 +-- Daniel, Eugene --+ Gordon:Helen )

4 > g3

5 Vertices: 7

6 Edges: 6

7 Directed: TRUE

8 Edges:

9

10 [0] Bob -> Alice

11 [1] Alice -> Bob

12 [2] Bob -> Cecil

13 [3] Daniel -> Cecil

14 [4] Eugene -> Gordon

15 [5] Eugene -> Helen
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Creating graphs, graph.formula

1 # A graph with isolate vertices

2 > g4 <- graph.formula( Alice -- Bob -- Daniel,

3 Cecil:Gordon, Helen )

4 > g4

5 Vertices: 6

6 Edges: 2

7 Directed: FALSE

8 Edges:

9

10 [0] Alice -- Bob

11 [1] Bob -- Daniel

12 > V(g4)

13 Vertex sequence:

14 [1] "Alice" "Bob" "Daniel"

15 [4] "Cecil" "Gordon" "Helen"
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Creating graphs, graph.formula

1 # "Arrows" can be arbitrarily long

2 > g5 <- graph.formula( Alice +---------+ Bob )

3 > g5

4 Vertices: 2

5 Edges: 2

6 Directed: TRUE

7 Edges:

8

9 [0] Bob -> Alice

10 [1] Alice -> Bob
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Creating graphs, graph.famous

1 > graph.famous("Cubical")

2 Vertices: 8

3 Edges: 12

4 Directed: FALSE

5 Edges:

6

7 [0] 0 -- 1

8 [1] 1 -- 2

9 [2] 2 -- 3

10 [3] 0 -- 3

11 [4] 4 -- 5

12 [5] 5 -- 6

13 [6] 6 -- 7

14 [7] 4 -- 7

15 [8] 0 -- 4

16 [9] 1 -- 5

17 [10] 2 -- 6

18 [11] 3 -- 7
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Creating graphs, graph.data.frame

1 > traits <- read.csv("traits.csv", head=F)

2 > traits

3 V1 V2 V3

4 1 Alice Anderson 48 F

5 2 Bob Bradford 33 M

6 3 Cecil Connor 45 F

7 4 David Daugher 34 M

8 5 Esmeralda Escobar 21 F

9 6 Frank Finley 36 M

10 7 Gabi Garbo 44 F

11 8 Helen Hunt 40 F

12 9 Iris Irving 25 F

13 10 James Jones 47 M

14 > colnames(traits) <- c("name", "age", "gender")

15 > traits[,1] <- sapply(strsplit(as.character(traits[,1]), " "), "[", 1)
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Creating graphs, graph.data.frame

1 > relations <- read.csv("relations.csv", head=F)

2 > relations

3 V1 V2 V3 V4 V5

4 1 Bob Alice N 4 4

5 2 Cecil Bob N 5 5

6 3 Cecil Alice Y 5 5

7 4 David Alice N 3 4

8 5 David Bob N 4 2

9 6 Esmeralda Alice Y 4 3

10 7 Frank Alice N 3 2

11 8 Frank Esmeralda N 4 4

12 9 Gabi Bob Y 5 5

13 10 Gabi Alice N 3 0

14 11 Helen Alice N 4 1

15 12 Iris Cecil N 0 1

16 ...

17 > colnames(relations) <- c("from", "to", "same.room",

18 "friendship", "advice")
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Creating graphs, graph.data.frame

1 > orgnet <- graph.data.frame(relations, vertices=traits)

2 > summary(orgnet)

3 Vertices: 10

4 Edges: 34

5 Directed: TRUE

6 No graph attributes.

7 Vertex attributes: name, age, gender.

8 Edge attributes: same.room, friendship, advice.
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Creating graphs, graph.data.frame

1 > plot(orgnet, layout=layout.kamada.kawai, vertex.label=V(orgnet)$name,

2 vertex.shape="rectangle", vertex.size=20, asp=FALSE)
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Creating graphs, random graphs

1 > er <- erdos.renyi.game(100, 100, type="gnm")

2 > plot(er, vertex.size=5, vertex.label=NA, asp=FALSE, vertex.shape="square",

3 layout=layout.fruchterman.reingold, edge.color="black")
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Creating graphs, random graphs

1 > ba <- ba.game(100, power=1, m=1)

2 > plot(ba, vertex.size=3, vertex.label=NA, asp=FALSE, vertex.shape="square",

3 layout=layout.fruchterman.reingold, edge.color="black",

4 edge.arrow.size=0.5)
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Meta data: graph/vertex/edge attributes

• Assigning attributes: set/get.graph/vertex/edge.attribute.
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Meta data: graph/vertex/edge attributes

• Assigning attributes: set/get.graph/vertex/edge.attribute.

• V(g) and E(g).

• Easy access of attributes:

1 > g <- erdos.renyi.game(30, 2/30)

2 > V(g)$color <- sample( c("red", "black"),

3 vcount(g), rep=TRUE)

4 > V(g)$color

5 [1] "red" "black" "red" "black" "black" "black" "red" "red" "red"

6 [10] "black" "black" "black" "red" "red" "black" "red" "black" "black"

7 [19] "red" "red" "black" "black" "red" "black" "black" "red" "black"

8 [28] "black" "black" "red"

9 > E(g)$color <- "grey"
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Vertex/edge selection with attributes

1 > red <- V(g)[ color == "red" ]

2 > bl <- V(g)[ color == "black" ]

3 > E(g)[ red %--% red ]$color <- "red"

4 > E(g)[ bl %--% bl ]$color <- "black"

5 > plot(g, vertex.size=5,

6 layout=layout.fruchterman.reingold,

7 vertex.label=NA)
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Visualizing graphs

• Three functions with (almost) identical interfaces.



Visualizing graphs

• Three functions with (almost) identical interfaces.

• plot Uses traditional R graphics, non-interactive, 2d. Publication quality plots in all
formats R supports.

1 > g <- barabasi.game(100, m=1)

2 > igraph.par("plot.layout",

3 layout.fruchterman.reingold)

4 > plot(g, vertex.size=4, vertex.label=NA,

5 edge.arrow.size=0.7,

6 edge.color="black",

7 vertex.color="red", frame=TRUE)
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Visualizing graphs

tkplot Uses Tcl/Tk via the tcltk package, interactive, 2d.

1 > id <- tkplot(g, vertex.size=4,

2 vertex.label=NA,

3 edge.color="black",

4 edge.arrow.size=0.7,

5 vertex.color="red")

6 > coords <- tkplot.getcoords(id)
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Visualizing graphs

rglplot Needs the rgl package.

1 > co <- layout.kamada.kawai(g, dim=3)

2 > rglplot(g, vertex.size=5,

3 vertex.label=NA,

4 layout=co)
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Working with a somewhat bigger graph

1 > vertices <- read.csv("http://cneurocvs.rmki.kfki.hu/igraph/judicial.csv")

2 > edges <- read.table("http://cneurocvs.rmki.kfki.hu/igraph/allcites.txt")

3 > jg <- graph.data.frame(edges, vertices=vertices, dir=TRUE)

4 > summary(jg)

5 Vertices: 30288

6 Edges: 216738

7 Directed: TRUE

8 No graph attributes.

9 Vertex attributes: name, usid, parties, year, overruled, overruling,

10 oxford, liihc, indeg, outdeg, hub, hubrank, auth, authrank, between, incent.

11 No edge attributes.
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Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE
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Working with a somewhat bigger graph

1 > is.connected(jg) # Is it connected?

2 [1] FALSE

3

4 > no.clusters(jg) # How many components?

5 [1] 4881

6

7 > table(clusters(jg)$csize) # How big are these?

8

9 1 3 4 25389

10 4871 8 1 1

11

12 > max(degree(jg, mode="in")) # Vertex degree

13 [1] 248

14 > max(degree(jg, mode="out"))

15 [1] 195

16 > max(degree(jg, mode="all"))

17 [1] 313
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Working with a somewhat bigger graph

1 # In-degree distribution

2 > plot(degree.distribution(jg, mode="in"), log="xy")
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Working with a somewhat bigger graph

1 # Out-degree distribution

2 plot(degree.distribution(jg, mode="out"), log="xy")
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Working with a somewhat bigger graph

1 # Taking the largest component

2 > cl <- clusters(jg)

3 > jg2 <- subgraph(jg, which(cl$membership == which.max(cl$csize)-1)-1)

4 > summary(jg2)

5 Vertices: 25389

6 Edges: 216718

7 Directed: TRUE

8 No graph attributes.

9 Vertex attributes: name, usid, parties, year, overruled, overruling,

10 oxford, liihc, indeg, outdeg, hub, hubrank, auth, authrank,

11 between, incent.

12 No edge attributes.
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Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180
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Working with a somewhat bigger graph

1 > graph.density(jg2) # Density

2 [1] 0.0003362180

3

4 > transitivity(jg2) # Transitivity

5 [1] 0.1260031

6

7 # Transitivity of a random graph of the same size

8 > g <- erdos.renyi.game(vcount(jg2), ecount(jg2), type="gnm")

9 > transitivity(g)

10 [1] 0.00064649

11

12 # Transitivity of a random graph with the same degrees

13 > g2 <- degree.sequence.game(degree(jg2,mode="all"), method="vl")

14 > transitivity(g2)

15 [1] 0.004107072
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Community structure detection

1 > fc <- fastgreedy.community(simplify(as.undirected(jg2)))

2 > memb <- community.to.membership(jg2,

3 fc$merges,

4 which.max(fc$modularity))

5 > lay <- layout.drl(jg2)

6 > jg3 <- graph.empty(n=vcount(jg2))

7 > colbar <- rainbow(5)

8 > col <- colbar[memb$membership+1]

9 > col[is.na(col)] <- "grey"

10 > plot(jg3, layout=lay, vertex.size=1,

11 vertex.label=NA, asp=FALSE,

12 vertex.color=col,

13 vertex.frame.color=col)
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Functionality, what can be calculated?

Fast (millions) creating graphs (most of the time) • structural modification
(add/delete edges/vertices) • subgraph • simplify •
graph.decompose • degree • clusters • graph.density • is.simple,
is.loop, is.multiple • articulation points and biconnected components
• ARPACK stuff: page.rank, hub.score, authority.score, eigenvector
centrality • transitivity • Burt’s constraint • dyad & triad census,
graph motifs • k-cores • MST • reciprocity • modularity •
closeness and (edge) betweenness estimation • shortest paths from
one source • generating Gn,p and Gn,m graphs • generating PA
graphs with various PA exponents • topological sort

Slow (10000) closeness • diameter • betweenness • all-pairs shortest paths,
average path length • most layout generators •

Very slow (100) cliques • cohesive blocks • edge/vertex connectivity • maximum
flows and minimum cuts • power centrality • alpha centrality •
(sub)graph isomorphism
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Connection to other network/graph software

• graph package: igraph.to.graphNEL, igraph.from.graphNEL.

• Sparse matrices (Matrix package), get.adjacency and graph.adjacency supports
them.

• sna and network R packages. Currently throught adjacency matrices. Use
namespaces!

• Pajek. .net file format is supported.

• Visone. Use GraphML format.

• Cytoscape. Use GML format.

• GraphViz. igraph can write .dot files.

• In general. The GraphML and GML file formats are fully supported, many programs can
read/write these.
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