Outline	The model	Results 0000	Summing-up

Simulating Games on Networks with **R** Application to Coordination in Dynamic Social Network Under Heterogeneity

Michał Bojanowski

ICS / Department of Sociology Utrecht University

UseR!2008, Dortmund

ICS / Department of Sociology Utrecht University

Michał Bojanowski

Introduction: Networks in social sciences

"No man is an island!"

- Outcomes of social and economic processes are determined not only by actors' attributes but also by the structure of relations between them (Granovetter, 1985).
- Actors (nodes/vertexes): individuals, organizations, states...
- Relations (links/edges): cooperation, friendship, communication, joint activities...
- Node attributes: gender, race, age, music tastes...
- Dyadic attributes: geographical distance, taste similarity...

Introduction	Outline	The model	Results 0000	Summing-up
In this t	alk			

- Using R to aid theory development
- (No data, ... at least from the real world)
- Framework for simulating certain kinds of models of social network dynamics
- Example of specific theoretical model

Michał Bojanowski

	Outline	The model	Results 0000	Summing-up
Outline				

1 The model

2 Simulation

3 Results

Types of stable networks

4 Implementation

5 Summing-up

ICS / Department of Sociology Utrecht University

Michał Bojanowski

	Outline	The model	Results 0000	Summing-up
Network	k games	5		

- Game-theoretical models of network and behavior dynamics
- Actors' action spaces include both relational and behavioral alternatives
- Network utility function of actor i

$$U_i \colon \mathcal{G}, \mathcal{X} \mapsto \Re$$

$$U_i(g, \mathbf{X})$$

where $g \in \mathcal{G}$ is the graph, and $X \in \mathcal{X}$ is the matrix of individual (node-level) attributes

- Existing models: Connections, Co-author (Jackson & Wolinski 1996), coordination (Goyal & Vega-Redondo 2005, Jackson & Watts 2002), R&D collaboration (Goyal, 2007) and more
- "Solving" by looking for various forms of equilibria/stability

Coordination in dynamic social network

- Fixed population of *n* actors composed of two groups (types)
 A and B
- Every actor chooses one of the two behavioral options x or y (behavior)
- Actors form an undirected network $g = [g_{ij}]_{n \times n}$

Utility of actor *i*:

+w for every relation with actor behaving the same as *i*

+b if *i* is of type *A* choosing *x* or of *B* choosing *y*

 $-\alpha\mu_i - \beta\mu_i^2$ Cost of maintaining ties where μ is the total number of relations of i

▲ □ ▶ ▲ □ ▶ ▲

Outline	The model	Results 0000	Summing-up

Network benefits

	A					В
Α	x	у		E	3 x	у
x y	b + w, b + w 0, b	b, 0 w, w	$0 < b \le w$ -		w, w b, 0	b = b + w, b + w
	Within type A	1			Wit	hin type B
				В	-	
		A	×	у	-	
		x y	b + w, w 0, 0	b, b w, b+w	-	
			Between	types	-	

ICS / Department of Sociology Utrecht University

3. 3

・ロッ ・回 ・ ・ ヨッ ・

Michał Bojanowski

	Outline	The model	Results 0000	Summing-up
Solution	conce	pt		

Pairwise stability (Jackson & Wolinsky, 1996)

Definition (Pairwise stability)

The network g is **stable** if and only if the following three conditions are jointly satisfied:

- There is no pair of actors in g who would benefit from creating a tie.
- 2 There is no actor in g who is interested in deleting a tie
- 3 No actor would benefit from changing his behavior

	Outline	The model	Simulation	Results 0000	Summing-up
Simulat	ion setu	aı			

- Generate a set of initial conditions: model parameters, initial network, type and behavior distribution
- Actors update their network or behavior in a random order
- Tie formation requires consent from the other player, deletion not (bilateral formation, unilateral deletion)
- The process is run until no change is possible. The final state is pairwise-stable

	Outline	The model	Results	Summing-up
Results				

- Small scale: qualitative analysis (visualizations with pictures and movies)
- Large scale: statistical analysis of generated data

ICS / Department of Sociology Utrecht University

Michał Bojanowski

	Outline	The model	Results ●000	Summing-up
Types of stable r	networks			
	~ · · ·			

Types of stable networks

Connected center-periphery structures

Michał Bojanowski

ICS / Department of Sociology Utrecht University

	Outline	The model	Results 0●00	Summing-up
Types of stable netw	vorks			

Behavior-segregated components

ICS / Department of Sociology Utrecht University

Michał Bojanowski

	Outline	The model	Results 00●0	Summing-up
Types of stable net	works			

Sparse "lines"

æ

Michał Bojanowski

Fairly integrated populations of "native" players

- ・ロト・日本・日本・日本・日本・ション

Michał Bojanowski

ICS / Department of Sociology Utrecht University

	Outline	The model	Results 0000	Implementation	Summing-up
Used pa	ckages				

- network for storing networks with vertex attributes
- simecol as the simulation workhorse
- sna and rSoNIA for network analysis and visualization
- plus a lot of tweaking (saving results, reading condition data)

Conclusions

- R is a convenient simulation platform, although perhaps not the most efficient
- Already some social network analysis functionality (network, dynamicnetwork, igraph, sna, ergm and more)

On the agenda:

- Finishing development of a package for simulating any network utility function
 - Modular architecture: type of dynamics, modeling dyadic interactions, tie cost functions, reputation, beliefs
 - Flexible result saving
 - Visualization

/⊒ > < ∃ >