
Distributed Computing using the multiR Package

Daniel J Grose1

1Centre for e-Science , Lancaster University , United Kingdom

March 31, 2008

Abstract

There exist a large number of computationally intensive statistical
procedures that can be implemented in a manner that is suitable for eval-
uation using a parallel computing environment. Within this number there
exists a class of procedures, often described as “course grained parallel”
or “embarrassingly parallel”. The defining characteristic of these proce-
dures is that they can be reduced to a number of sub-procedures that are
independent of each other and require little or no inter-procedure com-
munication i.e. they can be executed concurrently. Initially, it might be
thought that this class is too small to warrant significant attention, how-
ever this is far from being the case. For example, methodologies such
as bootstrapping, cross-validation, many types of Markov Processes (in-
cluding MCMC), and certain optimisation and search algorithms are of
this type. Importantly, the increase in availability of High Throughput
Computing (HTC) environments, consisting of large numbers of inter-
connected computers, has made employing such procedures particularly
attractive, leading to a significant increase in the amount of research be-
ing undertaken using HTC, notably in the areas of biochemistry, genetics,
pharmaceuticals, economics, financial modelling and the social sciences.

A High Throughput Computing environment provides a means for
processing a large number of independent (non-interacting) tasks simul-
taneously. In the simplest case, the HTC environment may employ only
a single multi-processor system. At the other extreme, the HTC environ-
ment might comprise a large number of systems with different operating
systems and hardware located across a number of different institutions
and administrative domains. When this is the case the environment may
be said to provide High Throughput Distributed Computing (HTDC).

HTC on a single multiprocessor system is relatively straightforward.
Typically the user has an account on the system (can be identified to
the system by a user name and password) and can submit the tasks for
processing by using the software tools available on that system. Higher
level means of submitting tasks exist, such as the snow package for R [1].
This package allows functions defined in R or installed R packages to be
invoked multiple times with varying argument signatures and executed on
a number of processors simultaneously. In [1] it is noted that the func-
tionality offered by snow could be extended to use the GRID, which by
its nature provides a HTDC environment. Some of these extensions have
been addressed within the GridR system [3], which is similar in princi-
ple to snow but provides some of the technical requirements necessary

1



for using GRID based resources which it achieves by employing the COG
toolkit [2].

However, there are a number of important considerations which arise
when using generalised HTDC (GRID based or otherwise) not all of which
have been encapsulated in either snow or GridR. These considerations are

1. A client session may terminate before all tasks have been processed.
For instance, the results of the completed tasks may need to be
collected in a future client session, possibly from a different system.

2. The systems employed to process the tasks may be multi-fold and
reside in different administrative domains, thus it is not practical
for a client to have to obtain and manage accounts on all (poten-
tially hundreds or even thousands) of these systems. Consequently,
a single means of identifying the client is required.

3. The client system must employ a secure channel for communication.

4. Host systems are typically shared by many clients and have schedul-
ing systems to allocate resources, thus the execution time and the
order in which tasks are processed may vary.

5. Individual tasks may fail to complete (this is quite common on cer-
tain systems, such as Condor pools).

6. The client interface should be independent of the nature of the dis-
tributed systems used for undertaking the computation.

All of these considerations have been well studied in many varied con-
texts and the design pattern most associated with realising the above
design criteria is a three-tier client server employing the public key in-
frastructure for authentication and security. The technologies required
for implementing such an architecture to host a HTDC service for R are
readily available and have been used to develop servers which expose an in-
terface for use within a client R session. The multiR package contains an
implementation of a client interface for use in R which is similar in many
respects to that of snow and GridR in that it extends the apply family of
functions (available in the base package) for submitting multiple function
invocations in a distributed environment. multiR also provides the func-
tionality required to generate certificate based proxy credentials, manage
active jobs and harvest results when they become available. Importantly,
the interface provided by multiR is independent of the many different
types of hardware and software systems employed within a HTDC envi-
ronment and requires no additional software components (Globus, CoG
and so on) to be installed before it can be used.

The full presentation of this work demonstrates how multiR is in-
stalled and used using several example applications which include boot-
strapping, calculating multivariate expectation values and function op-
timisation. For each of the examples the benefits of using multiR are
examined, with particular reference to the reduced time required to com-
pute them.

References

[1] A. J. Rossini, Luke Tierney, and Na Li. Simple parallel statistical computing
in R. Journal of computational and Graphical Statistics, 16(2):399–420, June
2007.

2



[2] Gregor von Laszewski and Mike Hategan. Workflow concepts of the Java
CoG kit. Journal of Grid Computing, 3(3–4):239–258, 2005.

[3] Denis Wegener, Thierry Senstag, Stelios Sfakianakis, Stefan Ruping, and
Anthony Assi. GridR: an R-based grid-enabled tool for data analysis in
ACGT clinico-genomic trials. In Third IEEE International Conference on
e-Science and Grid Computing (e-Science 2007), Bangalore, India., pages
205–212. IEEE, 2007.

3


