Development of a model to predict consumer acceptance of cottage pie from sensory quality and salt content

Joanna Purdy, Gillian Armstrong*, Heather McIlveen and Peter O’Donoghue

School of Hospitality, Tourism and Consumer Studies

University of Ulster
Within the UK, salt consumption is well above recommended values for sodium intake and poses great risk to health.

The greatest proportion (75 - 80%) can be attributed to processed foods (IFST, 1999).

The COMA Report and the Food Standards Agency have recommended a reduction of 30% in dietary salt intake (DOH, 1991; FSA, 2002).
Reducing salt in processed foods can potentially lead to loss of flavour, texture, product yield and eventual loss of revenue.

The AIM of this preliminary study was to develop a model to predict consumer acceptance from sensory quality and (reduced) salt content.
Methodology

- 8 samples (0.67% - 0%) of processed cottage pie.
- Trained QDA panel (n=10):
 - used to evaluate the effects of a reduction in salt on sensory characteristics;
 - samples evaluated in triplicate using a balanced block design.
- Consumer panel (9-point Hedonic scale) (n=80):
 - used to evaluate the acceptance of samples;
 - samples evaluated once in random order.
A Principal Component Analysis was applied to the 15 sensory attributes extracting 3 PCs that explained 56.5% of the variance in the data.

- PC1 represented a “salt” dimension
- PC2 represented “flavour and quality”
- PC3 represented an “aroma and sauce consistency” dimension

Linear regression was used to predict acceptance, Y, for each consumer in terms of sensory PCs:

\[Y = b_0 + b_1.PC1 + b_2.PC2 + b_3.PC3 \]
Introducing Added Salt to the Model

- PC1 was strongly associated with added salt (r=0.990) and so a second linear regression was done to relate PC1 to added salt, X
 - \(PC1 = a + b.X \)
- This was substituted into the model for Y
 - \(Y = a' + b1'.X + b2.PC2 + b3.PC3 \)
 - where \(a' = b0+b1.a \) and \(b1' = b1.b \)
- There were wide variations for all 4 regression coefficients
Statistical Analysis

- An exploratory hierarchical cluster analysis produced a dendrogram that was inspected leading to a decision to use 4 clusters.
- Hierarchical cluster analysis applied to the regression coefficients of the extended model. Used to highlight clusters of consumers whose acceptance was related to salt and sensory quality in different ways.
- Series of ANOVAs including cluster as a between subjects effect to reveal significant differences between clusters.
Results

The Consumer Clusters

- Cluster 1 (n=26) characterised by preference for low flavour and aroma
- Cluster 2 (n=14) characterised by preference for high flavour and aroma
- Cluster 3 (n=36) not as sensitive to sensory quality as clusters 1 and 2
- Cluster 4 (n=4) had largest increase in acceptance per unit added salt
- Cluster 1 is the only group for whom product acceptance decreases with added salt
Results

Comparing the Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>a'</th>
<th>b_1'</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=26)</td>
<td>6.3</td>
<td>-1.9</td>
<td>-5.9</td>
<td>-6.5</td>
</tr>
<tr>
<td>2 (n=14)</td>
<td>2.6</td>
<td>9.0</td>
<td>7.2</td>
<td>4.6</td>
</tr>
<tr>
<td>3 (n=36)</td>
<td>4.1</td>
<td>4.4</td>
<td>0.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>4 (n=4)</td>
<td>1.5</td>
<td>11.6</td>
<td>13.6</td>
<td>12.7</td>
</tr>
<tr>
<td>F(3,76)</td>
<td>22.8$^\wedge$</td>
<td>49.7$^\wedge$</td>
<td>162.3*</td>
<td>115.9*</td>
</tr>
</tbody>
</table>

* $P<0.001$ with Bonferroni post hoc tests revealing differences between each pair of clusters, $^\wedge P< 0.001$ with Bonferroni post hoc tests revealing differences between each pair of clusters except 2 and 4.
Results

The effect of added salt on product acceptance for an average product

PC2 = 0.0, PC3 = 0.0
Alternative Models that could have been used to analyse optimal added salt

- Linear models classify consumers into those for whom acceptance
 - improves with added salt
 - improves with reduced salt
- Future studies could compare acceptance of low salt and medium salt products (LM) as well as high salt and medium salt products (HM)
- This would allow those consumers preferring optimal added salt to be identified
- Only 14 out of 80 in current study

<table>
<thead>
<tr>
<th>LM</th>
<th>0</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>14</td>
<td>42</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

www.ulster.ac.uk
Conclusions and Implications

Cluster Analysis, friedman ANOVA and Wilcoxon Signed Rank Test identified 0.47% added salt as optimum.

Such predictive models may help food manufacturers:
 • reduce salt content effectively (& cost efficiently);
 • enhance product positioning strategies.

Further work is required to validate the model for a range of product types.