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Regulatory networks and protein signalling pathways

From Sachs et al., Science, 2005
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Flow cytometry technology
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Here: Concentrations of 
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Statistical Task
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Extract a network from a data matrix

Either m independent (steady-state) observations 

of the system X1,…,XN

Or time series of the system of length m: (X1,…,Xn)t=1,…,m
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Statistical Task
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Static Bayesian networks
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•Marriage between graph theory and 
probability theory.

•Directed acyclic graph (DAG) 
represents conditional independence 
relations.

•Markov assumption leads to a 
factorization of the joint probability 
distribution:
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Incidence Matrix of a DAG
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I(i,j)=1 if there is an edge from node i  to node j

I(i,j)=0 if there is no edge from node i to node j
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Ancestor Matrix of a DAG

A

CB

D

E F

NODES

EDGES

1

32

4

5 6

NODES

EDGES

Number the
variables/nodes

1=A, 2=B, 3=C, etc.



























=

001111

001111

000111

000001

000001

000000

A
A(j,i)=1 if there is a path from node i  to node j

A(j,i)=0 if there is no path from node i to node j
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Bayesian networks 
versus causal networks

Bayesian networks represent conditional (in)dependency
relations - not necessarily causal interactions.
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Equivalence classes of BNs
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completed partially

directed graphs

(CPDAGs)

A

C

B

v-structure

P(A,B)=P(A)·P(B)

P(A,B|C)≠P(A|C)·P(B|C)

P(A,B)≠P(A)·P(B)

P(A,B|C)=P(A|C)·P(B|C)
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CPDAG representations
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Static Bayesian networks
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Static Bayesian networks
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Parameterisation: Gaussian BGe scoring metric:

data~N(µ,Σ)

with the (conjugate) normal-Wishart distribution for the parameters

µ~N(µ*,(vW)-1) and  W~Wishart(T0)
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Static Bayesian networks
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BGe metric: closed form solution
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Static Bayesian networks
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BGe metric: closed form solution
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Learning the network/graph
structure

4,2 ·10187,8 ·10113,7· 106543#DAGs

10864n

Idea: Heuristically searching for the graph M*  

that is most supported by the data

P(M*|data)>P(graph|data),

e.g.: greedy search algorithm

graph → scoreBGe(graph)
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Learning the network/graph
structure

Distribution of P(graph|data)
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MCMC sampling of Bayesian networks

Better idea: Bayesian model averaging via Markov Chain

Monte Carlo (MCMC) simulations

Construct and simulate a Markov Chain (Mt)t in the space of 

DAGs whose distribution converges to the graph posterior

distribution as stationary distribution, i.e.:

P(Mt=graph|data) → P(graph|data)

t → ∞

to generate a DAG sample: G1,G2,G3,…GT
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Structure MCMC sampling scheme
(based on single edge operations)
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Metropolis Hastings sampler
A Metropolis Hastings MCMC sampling scheme consists of two parts. 

(i) Given a graph Gold, a new graph is proposed with a proposal probability Q(Gnew|Gold). 

(ii) The new graph is accepted with an acceptance probability A(Gnew|G), or recjeted
otherwise.

In the structure MCMC sampling scheme a neighbour graph, that is a graph
Gnew that can be reached from Gold by one single edge operation, is randomly
drawn from a discrete uniform distribution in the proposal move (i). 
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And in step (ii) the new graph is accepted with probability:
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Metropolis Hastings sampler
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And in step (ii) the new graph is accepted with probability:

Hastings ratioPrior ratioLikelihood ratio
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Metropolis Hastings sampler
A Metropolis Hastings MCMC sampling scheme consists of two parts. 

(i) Given a graph Gold, a new graph is proposed with a proposal probability Q(Gnew|Gold). 

(ii) The new graph is accepted with an acceptance probability A(Gnew|G), or recjeted
otherwise.

In the structure MCMC sampling scheme a neighbour graph, that is a graph
Gnew that can be reached from Gold by one single edge operation, is randomly
drawn from a discrete uniform distribution in the proposal move (i). 
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And in step (ii) the new graph is accepted with probability:

Hastings ratioRatio of Scores



30

Hastings ratio
Q(Gi|Gi-1)≠Q(Gi-1|Gi) is possible
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Metropolis Hastings algorithm
structure MCMC for Bayesian networks

Initialisation: Start from an arbitrary initial graph G 

(e.g. the empty-seeded graph) and set G0=G.

Iteration: For i=1,…,T

- Obtain a new graph Gi from the proposal distribution Q(Gi|Gi-1)

- Accept the new graph with probability A(Gi|Gi-1) where

A(.,.) has to be specified as described above; otherwise reject

Gi-1 leave the Markov chain state unchanged; symbolically: Gi=Gi-1.

END

Discard an initial ‚burn-in‘ period to allow the Markov chain to reach

stationarity, i.e to converge. For example discard the first I<T MCMC samples.

Output: An MCMC sample from the posterior distribution P(G|D), symbolically: 

MCMC sample: GI+1,…,GT
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Marginal edge posterior probabilities
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Use the DAG (CPDAG) sample for estimating the marginal

posterior probability of „directed edge relation features“
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where I(Gi) is 1 if the CPDAG of Gi contains the
directed edge A→B, and 0 otherwise
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Convergence of MCMC sampling

The DAG sample G1,G2,G3,…GT is generated via

Markov Chain Monte Carlo (MCMC) simulations so

that the Markov Chain (Mt)t converges to the

graph posterior distribution:

P(Mt=graph|data) → P(graph|data)

t → ∞
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Convergence of MCMC sampling

The DAG sample G1,G2,G3,…GT is generated via

Markov Chain Monte Carlo (MCMC) simulations so

that the Markov Chain (Mt)t converges to the

graph posterior distribution:

P(Mt=graph|data) → P(graph|data)

t → ∞

In practice: t is not infinite!!!
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data

Network reconstruction accuracy

true regulatory

network

Thresholding

marginal edge

posterior probabilities

Sensitivity:1/2=0.5

Specificity:4/4=1.0
Sensitivity:2/2=1.0

Specificity:3/4=0.75

concrete network
predictions

lowhigh
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Receiver Operator Characteristic (ROC) curve



39AUC=0.5 AUC=1 0.5<AUC≤1

se
ns

it
iv
it
y

inverse specificity

AUC scores
Area under Receiver Operator Characteristic (ROC) 

curve
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Outlook 
to practical application
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Gold-standard RAF pathway according to Sachs et al. (2004)
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Take the RAF pathway topology

Outlook

Cellular signalling cascade which consists of 11 phosphorylated proteins
and phospholipids in human immune systems cell

(true network known from the literature)
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Generate synthetic Gaussian network data

Outlook 
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Generate synthetic Gaussian network data

33 pippip ε=

We generate m indepentently and identically distributed (iid) realisations

for pip3, and we standardise the m observations: 

pip3 <- zscore(pip3):=(pip3-mean(pip3))/std(pip3)

initial node
without parents

where εpip3 is a Gaussian 

with expectation µ=0 and variance б2=1
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Generate synthetic Gaussian network data

plcgpipplcg εβ +⋅= 31
where the noise term εplcg is a Gaussian 

with expectation µ=0 and variance б2

Having sampled m realisations for parent node pip3, we sample the
regression coefficient β1 from a uniform distribution

on [0.5,2] with a randomly drawn sign +/-

And we generate m iid realisations for plcg as follows :

Standardise the m values for plcg <- zscore(plcg):=(plcg-mean(plcg))/std(plcg)

β1
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Generate synthetic Gaussian network data

232 32 pipplcgpippip εββ +⋅+⋅= where the noise term εpip2 is a Gaussian 

with expectation µ=0 and variance б2

Having sampled m realisations for pip3 and plcg, we sample both
regression coefficients β2 and β3 from a uniform distribution

on [0.5,2] with randomly drawn signs +/-

And we generate m iid realisations for pip2 as follows :

β2

Standardise the m values for pip2 <- zscore(pip2):=(pip2-mean(pip2))/std(pip2)

β3
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Generate synthetic Gaussian network data

We go to the next node, etc.

Each node is described as a linear combination of its parent nodes. The
regression coefficients are randomly sampled, and the noise terms are
Gaussian distributed. We standardise the data to avoid that the signals
become stronger and stronger. The parameter б2 can be used to vary the
signal-to-noise (SNR) ratio:
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Generate synthetic Gaussian network data

232 32 pipplcgpippip εββ +⋅+⋅=

)3()(
32

plcgpipstdsignalstd ⋅+⋅= ββ

signal
from the parents

E.g.:

N(0,1) N(0,1)
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Generate synthetic Gaussian network data

232 32 pipplcgpippip εββ +⋅+⋅=

σε == )()( 3pipstdnoisestd

noise

E.g.:
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Generate synthetic Gaussian network data

232 32 pipplcgpippip εββ +⋅+⋅=

σ

ββ )3(

)(

)( 32 plcgpipstd

noisestd

signalstd
SNR

⋅+⋅
==

signal
from the parents

noise

E.g.:
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Task: We will try to infer the

Raf-pathway graph topology

from a synthetically generated

data set


